giải bất pt : 2x+2/ 5 + 3/10 < 3x -2/ 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(5\left|2x-1\right|-3=7\Leftrightarrow5\left|2x-1\right|=10\Leftrightarrow\left|2x-1\right|=2\)
TH1 : \(2x-1=2\Leftrightarrow x=\frac{3}{2}\)
TH2 : \(2x-1=-2\Leftrightarrow x=-\frac{1}{2}\)
b, \(\left(2x+3\right)\left(x-2\right)-x^2+4=0\Leftrightarrow\left(2x+3\right)\left(x-2\right)-\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x+3-x-2\right)=0\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\Leftrightarrow x=-1;x=2\)
c, \(\frac{2x-3}{2}< \frac{1-3x}{-5}\Leftrightarrow\frac{2x-3}{2}+\frac{1-3x}{5}< 0\)
\(\Leftrightarrow\frac{10x-15+2-6x}{10}< 0\Rightarrow4x-13< 0\Leftrightarrow x< \frac{13}{4}\)
Bạn ơi bạn học lớp 8 rồi bạn có thể giải giú mình 2 bài toán lớp 7 đang đăng ko. Nếu đc minh cảm ơn nhiều nhé
mk chỉ giải đc có bài 1 thui nha bn
\(\frac{4}{x-2}+\frac{1}{x+3}=0\)
ĐKXĐ: x ≠ 2 và x ≠ -3
QĐKM:
⇔(x+3)4 + (x-2)1 = 0
⇔4x + 12 + x - 2 = 0
⇔4x + x = -12 + 2
⇔5x = -10
⇔x= -2
S={-2}
\(\frac{5}{3}-\left(2x-\frac{2}{4}\right)\ge x-\left(4x-\frac{3}{6}\right)\)
\(\Leftrightarrow\frac{5}{3}-2x+\frac{1}{2}\ge x-4x+\frac{1}{2}\)
\(\Leftrightarrow x\ge-\frac{5}{3}\)
Ý c cx vậy nha ! Chuyển vế rồi thu gọn lại
\(\left(2x+1\right)\left(x-1\right)>0\Leftrightarrow\left[{}\begin{matrix}x>1\\x< -\frac{1}{2}\end{matrix}\right.\)
\(\left(3x+1\right)\left(x-5\right)\left(-4x+5\right)\ge0\Leftrightarrow\left[{}\begin{matrix}x\le-\frac{1}{3}\\\frac{5}{4}\le x\le5\end{matrix}\right.\)
\(\frac{x+2}{x-2}\le\frac{3x+1}{2x-1}\Leftrightarrow\frac{3x+1}{2x-1}-\frac{x+2}{x-2}\ge0\)
\(\Leftrightarrow\frac{x^2-8x}{\left(2x-1\right)\left(x-2\right)}\ge0\Leftrightarrow\frac{x\left(x-8\right)}{\left(2x-1\right)\left(x-2\right)}\ge0\Leftrightarrow\left[{}\begin{matrix}x\le0\\\frac{1}{2}< x< 2\\x\ge8\end{matrix}\right.\)
\(\dfrac{2x-5}{3}-\dfrac{3x-1}{2}< \dfrac{3-x}{5}-\dfrac{2-x}{4}\)
\(\Leftrightarrow20\left(2x-5\right)-30\left(3x-1\right)< 12\left(3-x\right)-15\left(2-x\right)\)
\(\Leftrightarrow40x-100-90x+30< 36-12x-30+15x\)
\(\Leftrightarrow40x-90x+12x-15x< 36-30+100-30\)
\(\Leftrightarrow-53x< 76\)
\(\Leftrightarrow x>\dfrac{-76}{53}\)
ta có : x^5+2x^4+3x^3+3x^2+2x+1=0
\(\Leftrightarrow\)x^5+x^4+x^4+x^3+2x^3+2x^2+x^2+x+x+1=0
\(\Leftrightarrow\)(x^5+x^4)+(x^4+x^3)+(2x^3+2x^2)+(x^2+x)+(x+1)=0
\(\Leftrightarrow\)x^4(x+1)+x^3(x+1)+2x^2(x+1)+x(x+1)+(x+1)=0
\(\Leftrightarrow\)(x+1)(x^4+x^3+2x^2+x+1)=0
\(\Leftrightarrow\)(x+1)(x^4+x^3+x^2+x^2+x+1)=0
\(\Leftrightarrow\)(x+1)[x^2(x^2+x+1)+(x^2+x+1)]=0
\(\Leftrightarrow\)(x+1)(x^2+x+1)(x^2+1)=0
VÌ x^2+x+1=(x+\(\dfrac{1}{2}\))^2+\(\dfrac{3}{4}\)\(\ne0\) và x^2+1\(\ne0\)
\(\Rightarrow\)x+1=0
\(\Rightarrow\)x=-1
CÒN CÂU B TỰ LÀM (02042006)
b: x^4+3x^3-2x^2+x-3=0
=>x^4-x^3+4x^3-4x^2+2x^2-2x+3x-3=0
=>(x-1)(x^3+4x^2+2x+3)=0
=>x-1=0
=>x=1
Để \(\frac{2x\left(3x-5\right)}{x^2+1}< 0\)
ta thấy x2+1 luôn dương với mọi x
nên 2x(3x-5) <0
TH1: \(\orbr{\begin{cases}2x< 0\\3x-5>0\end{cases}\Leftrightarrow\orbr{\begin{cases}x< 0\\3x>5\end{cases}\Leftrightarrow}\orbr{\begin{cases}x< 0\\x>\frac{5}{3}\end{cases}\left(ktm\right)}}\)
TH2: \(\orbr{\begin{cases}2x>0\\3x-5< 0\end{cases}\Leftrightarrow\orbr{\begin{cases}x>0\\3x< 5\end{cases}\Leftrightarrow}\orbr{\begin{cases}x>0\\x< \frac{5}{3}\end{cases}\left(tm\right)}}\)
vậy \(0< x< \frac{5}{3}\)
THẤY ĐÚNG CHO MK 1 NẾU KO HIỂU THÌ ib NHA
\(\frac{2x\left(3x-5\right)}{x^2+1}< 0\)
\(\Rightarrow2x\left(3x-5\right)< 0\) ( vì \(x^2+1>0\))
\(\Rightarrow\hept{\begin{cases}2x< 0\\3x-5>0\end{cases}}\) hoặc \(\hept{\begin{cases}2x>0\\3x-5< 0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x< 0\\x>\frac{5}{3}\end{cases}}\) hoặc \(\hept{\begin{cases}x>0\\x< \frac{5}{3}\end{cases}}\)
\(\Rightarrow0< x< \frac{5}{3}\)
Vây \(S=\left\{x|x< \dfrac{15}{7}\right\}\)
lớp 8 chx hc kí hiệu đó anh ạ
a: =>2x-3x^2-x<15-3x^2-6x
=>x<-6x+15
=>7x<15
=>x<15/7
b: =>4x^2-24x+36-4x^2+4x-1>=12x
=>-20x+35>=12x
=>-32x>=-35
=>x<=35/32
\(\frac{2x+2}{5}+\frac{3}{10}< \frac{3x-2}{4}\)
\(\Leftrightarrow\)\(\frac{4\left(2x+2\right)}{20}+\frac{6}{20}< \frac{5\left(3x-2\right)}{20}\)
\(\Rightarrow\)\(8x+8+6< 15x-10\)
\(\Leftrightarrow\)\(8x-15x< -8-6-10\)
\(\Leftrightarrow\)\(-7x< -24\)
\(\Leftrightarrow\)\(x>\frac{24}{7}\)
Vậy bất phương trình có nghiệm là : \(x>\frac{24}{7}\)
2x+25+310<3x−242x+25+310<3x−24
⇔⇔4(2x+2)20+620<5(3x−2)204(2x+2)20+620<5(3x−2)20
⇒⇒8x+8+6<15x−108x+8+6<15x−10
⇔⇔8x−15x<−8−6−108x−15x<−8−6−10
⇔⇔−7x<−24−7x<−24
⇔⇔x>247x>247
Vậy bất phương trình có nghiệm là : x>247
Tick cho mình nhé !!.