Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(5\left|2x-1\right|-3=7\Leftrightarrow5\left|2x-1\right|=10\Leftrightarrow\left|2x-1\right|=2\)
TH1 : \(2x-1=2\Leftrightarrow x=\frac{3}{2}\)
TH2 : \(2x-1=-2\Leftrightarrow x=-\frac{1}{2}\)
b, \(\left(2x+3\right)\left(x-2\right)-x^2+4=0\Leftrightarrow\left(2x+3\right)\left(x-2\right)-\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x+3-x-2\right)=0\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\Leftrightarrow x=-1;x=2\)
c, \(\frac{2x-3}{2}< \frac{1-3x}{-5}\Leftrightarrow\frac{2x-3}{2}+\frac{1-3x}{5}< 0\)
\(\Leftrightarrow\frac{10x-15+2-6x}{10}< 0\Rightarrow4x-13< 0\Leftrightarrow x< \frac{13}{4}\)
Bạn ơi bạn học lớp 8 rồi bạn có thể giải giú mình 2 bài toán lớp 7 đang đăng ko. Nếu đc minh cảm ơn nhiều nhé
mk chỉ giải đc có bài 1 thui nha bn
\(\frac{4}{x-2}+\frac{1}{x+3}=0\)
ĐKXĐ: x ≠ 2 và x ≠ -3
QĐKM:
⇔(x+3)4 + (x-2)1 = 0
⇔4x + 12 + x - 2 = 0
⇔4x + x = -12 + 2
⇔5x = -10
⇔x= -2
S={-2}
\(\frac{5}{3}-\left(2x-\frac{2}{4}\right)\ge x-\left(4x-\frac{3}{6}\right)\)
\(\Leftrightarrow\frac{5}{3}-2x+\frac{1}{2}\ge x-4x+\frac{1}{2}\)
\(\Leftrightarrow x\ge-\frac{5}{3}\)
Ý c cx vậy nha ! Chuyển vế rồi thu gọn lại
\(\dfrac{2x-5}{3}-\dfrac{3x-1}{2}< \dfrac{3-x}{5}-\dfrac{2-x}{4}\)
\(\Leftrightarrow20\left(2x-5\right)-30\left(3x-1\right)< 12\left(3-x\right)-15\left(2-x\right)\)
\(\Leftrightarrow40x-100-90x+30< 36-12x-30+15x\)
\(\Leftrightarrow40x-90x+12x-15x< 36-30+100-30\)
\(\Leftrightarrow-53x< 76\)
\(\Leftrightarrow x>\dfrac{-76}{53}\)
Để \(\frac{2x\left(3x-5\right)}{x^2+1}< 0\)
ta thấy x2+1 luôn dương với mọi x
nên 2x(3x-5) <0
TH1: \(\orbr{\begin{cases}2x< 0\\3x-5>0\end{cases}\Leftrightarrow\orbr{\begin{cases}x< 0\\3x>5\end{cases}\Leftrightarrow}\orbr{\begin{cases}x< 0\\x>\frac{5}{3}\end{cases}\left(ktm\right)}}\)
TH2: \(\orbr{\begin{cases}2x>0\\3x-5< 0\end{cases}\Leftrightarrow\orbr{\begin{cases}x>0\\3x< 5\end{cases}\Leftrightarrow}\orbr{\begin{cases}x>0\\x< \frac{5}{3}\end{cases}\left(tm\right)}}\)
vậy \(0< x< \frac{5}{3}\)
THẤY ĐÚNG CHO MK 1 NẾU KO HIỂU THÌ ib NHA
\(\frac{2x\left(3x-5\right)}{x^2+1}< 0\)
\(\Rightarrow2x\left(3x-5\right)< 0\) ( vì \(x^2+1>0\))
\(\Rightarrow\hept{\begin{cases}2x< 0\\3x-5>0\end{cases}}\) hoặc \(\hept{\begin{cases}2x>0\\3x-5< 0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x< 0\\x>\frac{5}{3}\end{cases}}\) hoặc \(\hept{\begin{cases}x>0\\x< \frac{5}{3}\end{cases}}\)
\(\Rightarrow0< x< \frac{5}{3}\)
ta có : x^5+2x^4+3x^3+3x^2+2x+1=0
\(\Leftrightarrow\)x^5+x^4+x^4+x^3+2x^3+2x^2+x^2+x+x+1=0
\(\Leftrightarrow\)(x^5+x^4)+(x^4+x^3)+(2x^3+2x^2)+(x^2+x)+(x+1)=0
\(\Leftrightarrow\)x^4(x+1)+x^3(x+1)+2x^2(x+1)+x(x+1)+(x+1)=0
\(\Leftrightarrow\)(x+1)(x^4+x^3+2x^2+x+1)=0
\(\Leftrightarrow\)(x+1)(x^4+x^3+x^2+x^2+x+1)=0
\(\Leftrightarrow\)(x+1)[x^2(x^2+x+1)+(x^2+x+1)]=0
\(\Leftrightarrow\)(x+1)(x^2+x+1)(x^2+1)=0
VÌ x^2+x+1=(x+\(\dfrac{1}{2}\))^2+\(\dfrac{3}{4}\)\(\ne0\) và x^2+1\(\ne0\)
\(\Rightarrow\)x+1=0
\(\Rightarrow\)x=-1
CÒN CÂU B TỰ LÀM (02042006)
b: x^4+3x^3-2x^2+x-3=0
=>x^4-x^3+4x^3-4x^2+2x^2-2x+3x-3=0
=>(x-1)(x^3+4x^2+2x+3)=0
=>x-1=0
=>x=1
a) 2x + 2 > 4
\(\Leftrightarrow\) 2x > 2
\(\Leftrightarrow\) x > 2
Vậy no của bpt là x > 2.
b) 3x + 2 > -5
\(\Leftrightarrow\) 3x > -7
\(\Leftrightarrow\) x < -\(\frac{7}{3}\)
Vậy no của bpt là x < -\(\frac{7}{3}\)
c) 10 - 2x > 2 \(\Leftrightarrow\) -2x > 8 \(\Leftrightarrow\) x < -4. Vậy no của bpt là x < -4 d) 1 - 2x < 3 \(\Leftrightarrow\) -2x < -2 \(\Leftrightarrow\) x > 1 Vậy no của bpt là x > 1 e) 3 - \(\frac{2x}{5}\) > 2 - \(\frac{x}{3}\) \(\Leftrightarrow\) \(\frac{3.15}{15}\)- \(\frac{2x.3}{15}\) > \(\frac{2.15}{15}\) - \(\frac{5.x}{15}\)\(\Leftrightarrow\) 45 - 6x > 30 - 5x
\(\Leftrightarrow\) -6x + 5x > 30 - 45
\(\Leftrightarrow\) -x > -15
\(\Leftrightarrow\) x < 15
Vậy no của bpt là x < 15
a, 3x(2x+1)+4<2x(3x-1)-6
\(\Leftrightarrow\)6x2+3x+4<6x2-2x-6
\(\Leftrightarrow\)6x2+3x-6x2+2x < -6-4
\(\Leftrightarrow\)5x<-10
\(\Leftrightarrow\)x<-2
Vậy bpt có nghiệm x<-2
b,(2x-3)2 < (2x+5)(2x-5)
\(\Leftrightarrow\)4x2-6x+9 < 4x2-25
\(\Leftrightarrow\)4x2-6x-4x2 < -25-9
\(\Leftrightarrow\)-6x < -34
\(\Leftrightarrow\)x > \(\frac{17}{3}\)
Vậy bpt có nghiệm x > \(\frac{17}{3}\)
\(\frac{2x+2}{5}+\frac{3}{10}< \frac{3x-2}{4}\)
\(\Leftrightarrow\)\(\frac{4\left(2x+2\right)}{20}+\frac{6}{20}< \frac{5\left(3x-2\right)}{20}\)
\(\Rightarrow\)\(8x+8+6< 15x-10\)
\(\Leftrightarrow\)\(8x-15x< -8-6-10\)
\(\Leftrightarrow\)\(-7x< -24\)
\(\Leftrightarrow\)\(x>\frac{24}{7}\)
Vậy bất phương trình có nghiệm là : \(x>\frac{24}{7}\)
2x+25+310<3x−242x+25+310<3x−24
⇔⇔4(2x+2)20+620<5(3x−2)204(2x+2)20+620<5(3x−2)20
⇒⇒8x+8+6<15x−108x+8+6<15x−10
⇔⇔8x−15x<−8−6−108x−15x<−8−6−10
⇔⇔−7x<−24−7x<−24
⇔⇔x>247x>247
Vậy bất phương trình có nghiệm là : x>247
Tick cho mình nhé !!.