K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 4 2019

\(N=n^4+4n^2+4-4n^2=\left(n^2+2\right)^2-\left(2n\right)^2\)

\(N=\left(n^2-2n+2\right)\left(n^2+2n+2\right)\)

\(n>1\Rightarrow\left\{{}\begin{matrix}n^2-2n+2>1\\n^2+2n+2>1\end{matrix}\right.\) \(\Rightarrow N\) là tích của 2 số tự nhiên lớn hơn 1 nên N là hợp số

21 tháng 4 2019

\(^{n^4}\)+4

=(n^2)^2+4n^2+4-4n^2

=(n^2+2)^2-(2n)^2

=(n^2-2n+2)(n^2+2n+2)

vi n>1 n la so tu nhien nen n^2+- 2n +2 khac 1 va n^4+1

do do n^4 +1 la hop so

4 tháng 12 2014

Thế nếu n=1 thì 4n+n4=41+14=5

28 tháng 7 2020

Bạn tham khảo câu trả lời của anh alibaba Nguyễn ở đây nhé:

https://olm.vn/hoi-dap/detail/77939936222.html

Câu hỏi của Nguyễn Thị Thảo - Toán lớp 7 - Học toán với OnlineMath

10 tháng 10 2017

HELP ME PLEASE!!!!!!!!

11 tháng 10 2017

Nếu nn chẵn thì cái tổng chia hết cho 2

Nếu nn lẻ thì

Phân tích nhân tử

Ta có n4+4n=(n2)2+(2n)2+2.n2.2n−2.n2.2n=(n2+2n)2−n2.2n+1=(n2+2n−n.2n+12)(n2+2n+n.2n+12)n4+4n=(n2)2+(2n)2+2.n2.2n−2.n2.2n=(n2+2n)2−n2.2n+1=(n2+2n−n.2n+12)(n2+2n+n.2n+12)

Ta chỉ cần chứng minh cả 2 thừa số đều lớn hơn 1 là được

Tức là ta chứng minh n2+2n−n.2n+12≥1n2+2n−n.2n+12≥1

Tương đương với n2+2n+1−2n.2n+12+n2≥2n2+2n+1−2n.2n+12+n2≥2 ( nhân 2 cho 2 vế )

BĐT <=>(n−2n+12)2+n2≥2<=>(n−2n+12)2+n2≥2 đúng với nn lẻ và n≥3n≥3 

Vậy, ta có điều phải chứng minh

Đúng thì  :luoi:

24 tháng 11 2017

Đặt 111....1 ( n số 1 ) = a

=> 211....1( n số 1) = 2.1000....0( n số 0) + a = 2.(9a+1)+a = 18a+2+a = 19a+2

=> A = a+19a+2 = 20a+2 = 2.(10a+1) chia hết cho 2

Mà A > 2 => A là hợp số

=> ĐPCM

k mk nha

AH
Akai Haruma
Giáo viên
18 tháng 6 2019

Lời giải:

Với $n$ là hợp số mà lớn hơn $4$ ta luôn biểu diễn được $n$ dưới dạng $n=ab$ ($a,b\in\mathbb{N}\geq 2; a\neq b$)

Ta có:

\(n-1=ab-1\geq 2a-1=a+a-1>a\)

\(n-1=ab-1\geq 2b-1=b+b-1>b\)

Do đó trong chuỗi tích $(n-1)!=1.2....(n-1)$ chắc chắn có chứa thừa số $a,b$

\(\Rightarrow (n-1)!\vdots ab\) hay \((n-1)!\vdots n\) (đpcm)

AH
Akai Haruma
Giáo viên
6 tháng 7 2019

Lời giải:

Với $n>4$ và là hợp số, ta có thể biểu diễn $n=ab$ với $(a,b\in\mathbb{N}\geq 2$)

Nếu $a\neq b$: Ta thấy:

\(n-1=ab-1\geq 2a-1>a\)

\(n-1=ab-1\geq 2b-1>b\)

Do đó trong chuỗi tích $(n-1)!=1.2...(n-1)$ chắc chắn chứa 2 thừa số $a$ và $b$

\(\Rightarrow (n-1)!\vdots (ab)\) hay $(n-1)!\vdots n$

Nếu $a=b\rightarrow n=a^2$. Vì $a>4$ nên $a>2$ hay $a-2\geq 1$

Ta thấy : \(n-1-2a=ab-1-2a=a^2-1-2a=a(a-2)-1\geq a-1>0\)

\(\Rightarrow n-1>2a\)

Do đó trong chuỗi tích $(n-1)!=1.2...(n-1)$ chắc chắn có chứa thừa số $2a$ và $a$

\(\Rightarrow (n-1)!\vdots a^2\) hay $(n-1)!\vdots n$

Ta có đpcm.

15 tháng 2 2017

Với n chẵn thì:

\(\left(n^4+4^n\right)⋮2\)\(\left(n^4+4^n\right)>2\) nên là hợp số

Với n lẻ thì:

\(4^n\equiv-1\left(mod5\right)\)

\(n^4\equiv1\left(mod5\right)\)

\(\Rightarrow\left(n^4+4^n\right)\equiv0\left(mod5\right)\)

\(\left(n^4+4^n\right)>5\) nên \(\left(n^4+4^n\right)\) là hợp số

Vậy với mọi n tự nhiên và \(n>1\) thì A là hợp số