K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2017

HELP ME PLEASE!!!!!!!!

11 tháng 10 2017

Nếu nn chẵn thì cái tổng chia hết cho 2

Nếu nn lẻ thì

Phân tích nhân tử

Ta có n4+4n=(n2)2+(2n)2+2.n2.2n−2.n2.2n=(n2+2n)2−n2.2n+1=(n2+2n−n.2n+12)(n2+2n+n.2n+12)n4+4n=(n2)2+(2n)2+2.n2.2n−2.n2.2n=(n2+2n)2−n2.2n+1=(n2+2n−n.2n+12)(n2+2n+n.2n+12)

Ta chỉ cần chứng minh cả 2 thừa số đều lớn hơn 1 là được

Tức là ta chứng minh n2+2n−n.2n+12≥1n2+2n−n.2n+12≥1

Tương đương với n2+2n+1−2n.2n+12+n2≥2n2+2n+1−2n.2n+12+n2≥2 ( nhân 2 cho 2 vế )

BĐT <=>(n−2n+12)2+n2≥2<=>(n−2n+12)2+n2≥2 đúng với nn lẻ và n≥3n≥3 

Vậy, ta có điều phải chứng minh

Đúng thì  :luoi:

21 tháng 4 2019

\(^{n^4}\)+4

=(n^2)^2+4n^2+4-4n^2

=(n^2+2)^2-(2n)^2

=(n^2-2n+2)(n^2+2n+2)

vi n>1 n la so tu nhien nen n^2+- 2n +2 khac 1 va n^4+1

do do n^4 +1 la hop so

bạn phải cm ƯCLNcủa tử và mẫu là 1

24 tháng 6 2019

bạn giải hộ mình với

17 tháng 1 2016

bấm vào chữ Đúng 0 sẽ hiện ra kết quả 

olm-logo.png

3 tháng 6 2018

b, vì a và b là 2 stn liên tiếp nên a=b+1 hoặc b=a+1

cho b=a+1

\(A=a^2+b^2+c^2=a^2+b^2+a^2b^2=a^2+\left(a+1\right)^2+a^2\left(a+1\right)^2\)

\(=a^2+\left(a+1\right)^2\left(a^2+1\right)=a^2+\left(a^2+2a+1\right)\left(a^2+1\right)\)

\(=a^2+2a\left(a^2+1\right)+\left(a^2+1\right)^2=\left(a^2+a+1\right)^2\)

\(\Rightarrow\sqrt{A}=\sqrt{\left(a^2+a+1\right)^2}=a^2+a+1=a\left(a+1\right)+1=ab+1\)

vì a b là 2 stn liên tiếp nên sẽ có 1 số chẵn\(\Rightarrow ab\)chẵn \(\Rightarrow ab+1\)lẻ \(\Rightarrow\sqrt{A}\)lẻ (đpcm)

4 tháng 6 2018

Làm cả câu a đi nhé! Nếu bạn làm được cả câu a thì mình k!  ^_^  *_*

NV
22 tháng 4 2019

\(N=n^4+4n^2+4-4n^2=\left(n^2+2\right)^2-\left(2n\right)^2\)

\(N=\left(n^2-2n+2\right)\left(n^2+2n+2\right)\)

\(n>1\Rightarrow\left\{{}\begin{matrix}n^2-2n+2>1\\n^2+2n+2>1\end{matrix}\right.\) \(\Rightarrow N\) là tích của 2 số tự nhiên lớn hơn 1 nên N là hợp số

7 tháng 3 2018

+, Nếu n chia 5 dư +-1 thì :

n^2 chia 5 dư 1 => n^2+4 chia hết cho 5

Mà n^2+4 > 5 => n^2+4 là hợp số

+, Nếu n chia 5 dư +-3 thì :

n^2 chia 5 dư 4 => n^2+16 chia hết cho 5

Mà n^2+16 > 5 => n^2+16 lừ hợp số 

=> để n^2+4 và n^2+16 đều là số nguyên tố thì n chia hết cho 5

Tk mk nha

24 tháng 6 2019

\(\frac{n^2+n+1}{n^4+n^2+1}=\frac{n^2+n+1}{\left(n^2+n+1\right)+\left(n^4-n\right)}=\frac{n^2+n+1}{\left(n^2+n+1\right)+n\left(n^3-1\right)}=\frac{n^2+n+1}{\left(n^2+n+1\right)+n\left(n-1\right)\left(n^2+n+1\right)}=\frac{n^2+n+1}{\left(n^2+n+1\right)\left(n^2-n+1\right)}=\frac{1}{n^2-n+1}\)

24 tháng 6 2019

Nguyễn Trần Nhã Anh cách biến đổi khác dễ hơn :)
\(\frac{n^2+n+1}{n^4+n^2+1}=\frac{n^2+n+1}{n^4+2n^2+1-n^2}=\frac{n^2+n+1}{\left(n^2+1\right)-n^2}=\frac{n^2+n+1}{\left(n^2-n+1\right)\left(n^2+n+1\right)}=\frac{1}{n^2-n+1}\)

Bài 1: 

\(=a^8+2a^4+1-a^4\)

\(=\left(a^4+1\right)^2-a^4\)

\(=\left(a^4-a^2+1\right)\left(a^4+a^2+1\right)\)

\(=\left(a^4-a^2+1\right)\left(a^4+2a^2+1-a^2\right)\)

\(=\left(a^4-a^2+1\right)\left(a^2+1-a\right)\left(a^2+1+a\right)\)