K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2017

A B C H

Xét \(\Delta AHB\)và \(\Delta AHC\)

AH cạnh chung

\(\widehat{AHB}=\widehat{AHC}\)( kề bù )

\(\widehat{B}=\widehat{C}\) ( đề bài cho góc B = góc C )

\(\Rightarrow\)\(\Delta AHB=\Delta AHC\)( g - c - g )

\(\Rightarrow\)\(AB=AC\)( 2 cạnh tương ứng bằng nhau )

bài này phải vễ thêm yếu tố phụ là AH nha

25 tháng 11 2020

- Giả sử tam giác ABC vuông tại A . Theo bài ra , ta có :

\(\frac{AB}{AC}=\frac{3}{4}\Rightarrow AB=\frac{3}{4}AC\left(1\right)\)

- Áp dụng đlí Py - ta - go cho tam giác vuông ABC ( \(\widehat{A}=90^o\)

Ta có : \(BC^2=AB^2+AC^2\)

           \(\Leftrightarrow125^2=\left(\frac{3}{4}AC\right)^2+AC^2\)

           \(\Leftrightarrow15625=\frac{9}{16}AC^2+AC^2\)

           \(\Leftrightarrow15625=\left(\frac{9}{16}+1\right)AC^2\)

            \(\Leftrightarrow\frac{25}{16}AC^2=15625\)

            \(\Leftrightarrow AC^2=\frac{15625.16}{25}\)

           \(\Leftrightarrow AC=\sqrt{\frac{15625.16}{25}}=\frac{125.4}{5}=100\left(cm\right)\)

Thay AC = 100cm vào (1) , ta được :

\(AB=\frac{3}{4}.100=75\left(cm\right)\)

- Áp dụng hệ thức lượng trong tam giác ABC ( \(\widehat{A}=90^o\)) đường cao AH , ta có :

\(AB^2=BH.BC\)

\(\Leftrightarrow BH=\frac{AB^2}{BC}=\frac{75^2}{125}=45\left(cm\right)\)

Ta lại có : BC = BH + HC

                125 = 45 + HC

                HC = 125 - 45 = 80 ( cm )

Vậy : AB = 75 cm

         AC = 100 cm

         HC = 80 cm

         BH = 45 cm

19 tháng 11 2016

A B C N M

\(AB=BC\)

\(\Rightarrow ABC\) là tam giác cân

Vậy \(\widehat{B}=\widehat{C}\)

Xét \(\Delta MBC\)\(\Delta NBC\) có :

\(MB=NC\)

\(BC\) là cạnh chung

\(\widehat{B}=\widehat{C}\)

Do đó : 2 tam giác bằng nhau ( c . g . c )

19 tháng 11 2016

tks

22 tháng 8 2023

Góc

Số đo góc

Góc đỉnh A; cạnh AB, AD

90o

Góc đỉnh B; cạnh BA, BC

60o

Góc đỉnh C; cạnh CB, CD

90o

Góc đỉnh D, cạnh DA, DC

120o

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)     \(PQ = n.\cos a,PQ = m.\cos b\)

b)     \(MQ = n.\sin a,PN = m.\sin b \Rightarrow MN = n.\sin a + m.\sin b\)

\(\begin{array}{l}{S_{MPQ}} = \frac{1}{2}m.\cos b.n.\sin a = \frac{1}{2}m.n.\cos b.\sin a\\{S_{NPQ}} = \frac{1}{2}n.\cos a.m.\sin b = \frac{1}{2}m.n.\cos a.\sin b\\{S_{MNP}} = \frac{1}{2}m.n.\sin \left( {a + b} \right)\end{array}\)

c)     \({S_{MNP}} = {S_{MPQ}} + {S_{NPQ}} \Rightarrow \frac{1}{2}m.n.\cos b.\sin a + \frac{1}{2}m.n.\cos a.\sin b = \frac{1}{2}m.n.\sin \left( {a + b} \right)\)

\( \Rightarrow \sin \left( {a + b} \right) = \sin a.\cos b + \cos a.\sin b\)

d)     \(\sin \left( {a - b} \right) = \sin \left[ {a + \left( { - b} \right)} \right] = \sin a.\cos \left( { - b} \right) + \cos a.\sin \left( { - b} \right) = \sin a.\cos b - \cos a.\sin b\)

13 tháng 4 2018

sinB = b/a; cosB = c/a; tgB = b/c; cotgB = c/b

sinC = c/a; cosC = b/a; tgC = c/b; cotgB = b/c

a) b = a.(b/a) = a.sinB = a.cosC

c = a. (c/a) = a.cosB = a.sinC

b) b = c. (b/c) = c.tgB = c.cotgC

c = b.(c/b) = b.cotgB = b.tgC