tinh min:S=2x^2+9y^2-2xy+2x+2y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách của Kudo là phải mò ra dấu "=" là mới làm được nhé , vậy nếu không mò được thì sao ?
Xét \(2S=4x^2+18y^2-4xy+4x+4y\)
\(=\left(4x^2-4xy+y^2\right)+17y^2+4x+4y\)
\(=\left[\left(2x-y\right)^2+2\left(2x-y\right)+1\right]+17y^2+6y-1\)
\(=\left(2x-y+1\right)^2+17\left(y^2+\frac{6}{17}y+\frac{9}{289}\right)-\frac{26}{17}\)
\(=\left(2x-y+1\right)^2+17\left(y+\frac{3}{17}\right)^2-\frac{26}{17}\ge-\frac{26}{17}\)
\(\Rightarrow S\ge-\frac{26}{17}\div2=-\frac{13}{17}\)
Dấu "=" \(\Leftrightarrow\hept{\begin{cases}2x-y+1=0\\y+\frac{3}{17}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-\frac{10}{17}\\y=-\frac{3}{17}\end{cases}}\)
Gọn gàng đẹp mắt =))
\(a,4x^2+9y^2+4x-24y+17=0\)
\(\Rightarrow\left(4x^2+4x+1\right)+\left(9y^2-24y+16\right)=0\)
\(\Rightarrow\left(2x+1\right)^2+\left(3y-4\right)^2=0\)
\(\left(2x+1\right)^2\ge0;\left(3y-4\right)^2\ge0\)
\(\Rightarrow\hept{\begin{cases}\left(2x+1\right)^2=0\\\left(3y-4\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}2x+1=0\\3y-4=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-\frac{1}{2}\\y=\frac{4}{3}\end{cases}}}\)
a) Ta có: \(x^2-2xy+y^2-2x+2y\)
\(=\left(x-y\right)^2-2\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y-2\right)\)
b) Ta có: \(x^2-4x+4-x^2y+2xy\)
\(=\left(x-2\right)^2-xy\left(x-2\right)\)
\(=\left(x-2\right)\left(x-2-xy\right)\)
a: =(x^2y-x^3)-(9y-9x)
=x^2(y-x)-9(y-x)
=(y-x)(x^2-9)
=(y-x)(x-3)(x+3)
b: \(=\left(x^2-2xy+y^2\right)-4\)
=(x-y)^2-4
=(x-y-2)(x-y+2)
c: \(=\left(x^2+4x+4\right)-y^2\)
\(=\left(x+2\right)^2-y^2\)
=(x+2+y)(x+2-y)
d: =(x^2-y^2)-(2x+2y)
=(x-y)(x+y)-2(x+y)
=(x+y)(x-y-2)
\(a,x^2y-x^3-9y+9x\)
\(=\left(x^2y-x^3\right)-\left(9y-9x\right)\)
\(=x^2\left(y-x\right)-9\left(y-x\right)\)
\(=\left(y-x\right)\left(x^2-9\right)\)
\(=\left(y-x\right)\left(x-3\right)\left(x+3\right)\)
\(b,x^2-2xy+y^2-4\)
\(=\left(x^2-2xy+y^2\right)-4\)
\(=\left(x-y\right)^2-2^2\)
\(=\left(x-y-2\right)\left(x-y+2\right)\)
\(c,x^2+4x-y^2+4\)
\(=\left(x^2+4x+4\right)-y^2\)
\(=\left(x+2\right)^2-y^2\)
\(=\left(x+2-y\right)\left(x+2+y\right)\)
\(=\left(x-y+2\right)\left(x+y+2\right)\)
\(d,x^2-y^2-2x-2y\)
\(=\left(x^2-y^2\right)-\left(2x+2y\right)\)
\(=\left(x-y\right)\left(x+y\right)-2\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-2\right)\)
#Urushi
a) \(x^2+2xy^3-3z+4xy-5xy^2+2xy-5z\)
\(=x^2+2xy^3-5xy^2-\left(3z+5z\right)+\left(4xy+2xy\right)\)
\(=x^2+2xy^3-5xy^2-8z+6xy\)
b) \(\left(x-3y\right)\left(x^2-3xy+9y^2\right)\)
\(=\left(x-3y\right)\left[x^2-x\cdot3y+\left(3y\right)^2\right]\)
\(=x^3-\left(3y\right)^3\)
\(=x^3-27y^3\)
c) \(\left(2x-y\right)\left(2x+y\right)\)
\(=\left(2x\right)^2-y^2\)
\(=4x^2-y^2\)
d) \(\left(3x-y\right)\left(2y+5\right)-16x4y\)
\(=6xy+15x-2y^2-5y-64xy\)
\(=-58xy+15x-2y^2-5y\)
a,Đặt A= \(2x^2+2xy+y^2-2x+2y+15\)
\(=\left(x^2+y^2+1+2xy+2x+2y\right)+\left(x^2-4x+4\right)+10\)
\(=\left(x+y+1\right)^2+\left(x-2\right)^2+10\)
Vì \(\left(x+y+1\right)^2\ge0;\left(x-2\right)^2\ge0\Rightarrow\left(x+y+1\right)^2+\left(x-2\right)^2+10\ge0\)
hay \(A\ge10\)
Dấu ''='' xảy ra khi \(\left\{{}\begin{matrix}\left(x+y+1\right)^2=0\\\left(x-2\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x+y+1=0\\x=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=-3\\x=2\end{matrix}\right.\)
Vậy min A=10 khi x=2; y=-3
b/ \(=\left(x^2-2xy+y^2\right)+\left(3x^2-12x+12\right)+\left(8y^2-32y+32\right)-4\)
=\(\left(x-y\right)^2+3\left(x-2\right)^2+8\left(y-2\right)^2-4\ge-4\)
Vậy Min =-4 khi x=y=2
\(S=\left(x^2+2x+1\right)+\left(y^2+2y+1\right)+\left(x^2-2xy+y^2\right)+7x^2-2\)
\(S=\left(x+1\right)^2+\left(y+1\right)^2+\left(x-y\right)^2-2\ge-2\) vì \(\hept{\begin{cases}\left(x+1\right)^2\ge0\\\left(y+1\right)^2\ge0\\\left(x-y\right)^2\ge0\end{cases}}\)
Dấu = xảy ra khi \(\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y+1\right)^2=0\\\left(x-y\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=-1\\x=y=-1\end{cases}}\)
Vậy...
t lam sai r ;(