K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2019

\(S=\left(x^2+2x+1\right)+\left(y^2+2y+1\right)+\left(x^2-2xy+y^2\right)+7x^2-2\)

\(S=\left(x+1\right)^2+\left(y+1\right)^2+\left(x-y\right)^2-2\ge-2\) vì \(\hept{\begin{cases}\left(x+1\right)^2\ge0\\\left(y+1\right)^2\ge0\\\left(x-y\right)^2\ge0\end{cases}}\)

Dấu = xảy ra khi \(\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y+1\right)^2=0\\\left(x-y\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=-1\\x=y=-1\end{cases}}\)

Vậy...

19 tháng 4 2019

t lam sai r ;(

17 tháng 6 2019

Cách của Kudo là phải mò ra dấu "=" là mới làm được nhé , vậy nếu không mò được thì sao ? 

Xét  \(2S=4x^2+18y^2-4xy+4x+4y\)

               \(=\left(4x^2-4xy+y^2\right)+17y^2+4x+4y\)

               \(=\left[\left(2x-y\right)^2+2\left(2x-y\right)+1\right]+17y^2+6y-1\)

               \(=\left(2x-y+1\right)^2+17\left(y^2+\frac{6}{17}y+\frac{9}{289}\right)-\frac{26}{17}\)

                \(=\left(2x-y+1\right)^2+17\left(y+\frac{3}{17}\right)^2-\frac{26}{17}\ge-\frac{26}{17}\)

\(\Rightarrow S\ge-\frac{26}{17}\div2=-\frac{13}{17}\)

Dấu "=" \(\Leftrightarrow\hept{\begin{cases}2x-y+1=0\\y+\frac{3}{17}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-\frac{10}{17}\\y=-\frac{3}{17}\end{cases}}\)

Gọn gàng đẹp mắt =))

19 tháng 9 2019

\(a,4x^2+9y^2+4x-24y+17=0\)

\(\Rightarrow\left(4x^2+4x+1\right)+\left(9y^2-24y+16\right)=0\)

\(\Rightarrow\left(2x+1\right)^2+\left(3y-4\right)^2=0\)

\(\left(2x+1\right)^2\ge0;\left(3y-4\right)^2\ge0\)

\(\Rightarrow\hept{\begin{cases}\left(2x+1\right)^2=0\\\left(3y-4\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}2x+1=0\\3y-4=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-\frac{1}{2}\\y=\frac{4}{3}\end{cases}}}\)

9 tháng 11 2022

loading...  giúp mình với chiều thì rồi

13 tháng 7 2017

a,Đặt A= \(2x^2+2xy+y^2-2x+2y+15\)

\(=\left(x^2+y^2+1+2xy+2x+2y\right)+\left(x^2-4x+4\right)+10\)

\(=\left(x+y+1\right)^2+\left(x-2\right)^2+10\)

\(\left(x+y+1\right)^2\ge0;\left(x-2\right)^2\ge0\Rightarrow\left(x+y+1\right)^2+\left(x-2\right)^2+10\ge0\)

hay \(A\ge10\)

Dấu ''='' xảy ra khi \(\left\{{}\begin{matrix}\left(x+y+1\right)^2=0\\\left(x-2\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x+y+1=0\\x=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=-3\\x=2\end{matrix}\right.\)

Vậy min A=10 khi x=2; y=-3

15 tháng 2 2020

b/ \(=\left(x^2-2xy+y^2\right)+\left(3x^2-12x+12\right)+\left(8y^2-32y+32\right)-4\)

=\(\left(x-y\right)^2+3\left(x-2\right)^2+8\left(y-2\right)^2-4\ge-4\)

Vậy Min =-4 khi x=y=2

a) Ta có: \(x^2-2xy+y^2-2x+2y\)

\(=\left(x-y\right)^2-2\left(x-y\right)\)

\(=\left(x-y\right)\left(x-y-2\right)\)

b) Ta có: \(x^2-4x+4-x^2y+2xy\)

\(=\left(x-2\right)^2-xy\left(x-2\right)\)

\(=\left(x-2\right)\left(x-2-xy\right)\)

a: =(x^2y-x^3)-(9y-9x)

=x^2(y-x)-9(y-x)

=(y-x)(x^2-9)

=(y-x)(x-3)(x+3)

b: \(=\left(x^2-2xy+y^2\right)-4\)

=(x-y)^2-4

=(x-y-2)(x-y+2)

c: \(=\left(x^2+4x+4\right)-y^2\)

\(=\left(x+2\right)^2-y^2\)

=(x+2+y)(x+2-y)

d: =(x^2-y^2)-(2x+2y)

=(x-y)(x+y)-2(x+y)

=(x+y)(x-y-2)

29 tháng 8 2023

\(a,x^2y-x^3-9y+9x\)

\(=\left(x^2y-x^3\right)-\left(9y-9x\right)\)

\(=x^2\left(y-x\right)-9\left(y-x\right)\)

\(=\left(y-x\right)\left(x^2-9\right)\)

\(=\left(y-x\right)\left(x-3\right)\left(x+3\right)\)

\(b,x^2-2xy+y^2-4\)

\(=\left(x^2-2xy+y^2\right)-4\)

\(=\left(x-y\right)^2-2^2\)

\(=\left(x-y-2\right)\left(x-y+2\right)\)

\(c,x^2+4x-y^2+4\)

\(=\left(x^2+4x+4\right)-y^2\)

\(=\left(x+2\right)^2-y^2\)

\(=\left(x+2-y\right)\left(x+2+y\right)\)

\(=\left(x-y+2\right)\left(x+y+2\right)\)

\(d,x^2-y^2-2x-2y\)

\(=\left(x^2-y^2\right)-\left(2x+2y\right)\)

\(=\left(x-y\right)\left(x+y\right)-2\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y-2\right)\)

#Urushi

12 tháng 7 2023

a) \(x^2+2xy^3-3z+4xy-5xy^2+2xy-5z\)

\(=x^2+2xy^3-5xy^2-\left(3z+5z\right)+\left(4xy+2xy\right)\)

\(=x^2+2xy^3-5xy^2-8z+6xy\)

b) \(\left(x-3y\right)\left(x^2-3xy+9y^2\right)\)

\(=\left(x-3y\right)\left[x^2-x\cdot3y+\left(3y\right)^2\right]\)

\(=x^3-\left(3y\right)^3\)

\(=x^3-27y^3\)

c) \(\left(2x-y\right)\left(2x+y\right)\)

\(=\left(2x\right)^2-y^2\)

\(=4x^2-y^2\)

d) \(\left(3x-y\right)\left(2y+5\right)-16x4y\)

\(=6xy+15x-2y^2-5y-64xy\)

\(=-58xy+15x-2y^2-5y\)

12 tháng 7 2023

Bạn xem lại đề bài nhé!

20 tháng 8 2021

1, \(x^2-y^2-2x+2y=\left(x-y\right)\left(x+y\right)-2\left(x-y\right)=\left(x+y-2\right)\left(x-y\right)\)

2, \(x^2-25+y^2+2xy=\left(x+y\right)^2-5^2=\left(x+y-5\right)\left(x+y+5\right)\)

3, \(x^2y-x^3-9y+9x=x^2\left(y-x\right)-9\left(y-x\right)=\left(x-3\right)\left(x+3\right)\left(y-x\right)\)

4, \(x^4+2x^3+x^2=x^2\left(x^2+2x+1\right)=x^2\left(x+1\right)^2\)

5, \(x^4+8x=x\left(x^3+8\right)=x\left(x+8\right)\left(x^2-8x+64\right)\)