Cho tam giác ABC, có góc B = góc C. Tia phân giác của góc A cắt BC tại M. C/m
a) tam giác AMB = tam giác AMC
b) AB = AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAMB và ΔAMC có
AB=AC
\(\widehat{BAM}=\widehat{CAM}\)
AM chung
Do đó: ΔAMB=ΔAMC
b: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có
AM chung
\(\widehat{HAM}=\widehat{KAM}\)
Do đó: ΔAHM=ΔAKM
Suy ra: AH=AK
c: Ta có: ΔAHM=ΔAKM
nên MH=MK
Ta có: AH=AK
nên A nằm trên đường trung trực của HK(1)
Ta có: MH=MK
nên M nằm trên đường trung trực của HK(2)
Từ (1) và (2) suy ra AM là đường trung trực của HK
hay AM\(\perp\)MK
a) Xét tam giác AMB và tam giác AMC có:
+ AB = AC (gt).
+ AM chung.
+ ^BAM = ^CAM (AM là phân giác ^BAC).
=> Tam giác AMB = Tam giác AMC (c - g - c).
b) Xét tam giác ABC cân tại A có: AB = AC (gt).
=> Tam giác ABC cân tại A.
Mà AD là phân giác ^BAC (gt).
=> AD là đường trung tuyến (Tính chất các đường trong tam giác cân).
=> D là trung điểm của BC.
Xét tam giác MBD và tam giác MCD có:
+ MB = MC (do tam giác AMB = tam giác AMC).
+ MD chung.
+ BD = CD (do D là trung điểm của BC).
=> Tam giác MBD = Tam giác MCD (c - c - c).
Cậu ghi rõ ràng hơn chút được không ạ . Cậu ghi AB AC ; BE BI mình không hiểu đc
a: Xét ΔAMB và ΔAMC có
AB=AC
\(\widehat{BAM}=\widehat{CAM}\)
AM chung
Do đó: ΔAMB=ΔAMC
b: ta có: ΔABC cân tại A
mà AM là đường phân giác
nên AM là đường cao