Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a1, Xét tam giác AMB và tam giác AMC có :
AM chung
B=C(tam giác ABC cân )
AB=AC9tam giác ABC cân)
Do đó tam giác AMB=tam giác AMC(c.g.c)
a2, Vì tam giác AMB=tam giác AMC( cmt)
=>Bam=Cam ( 2 góc tương ứng)
=>AM là tia p/g góc A
Mình ms làm xong câu a thôi đợi mình nghĩ nót câu kia đã. bạn tick nha mình đảm bảo đúng
Hình (tự vẽ)
a) ΔABE cân
Xét hai tam giác vuông ABH và EBH có:
\(\widehat{ABH}=\widehat{EBH}\)(BH là phân giác)
HB là cạnh chung.
Do đó: ΔABH = ΔEBH (cạnh huyền - góc nhọn)
⇒ BA = BE (2 cạnh tương ứng)
⇒ ΔABE cân tại B.
b) ΔABE đều
Vì ΔABE là tam giác cân (câu a) có góc B bằng 60o (gt) ⇒ ΔABE là tam giác đều.
c) AED cân
Vì ΔABH = ΔEBH (câu a) ⇒ AH = EH (2 cạnh tương ứng)
Xét hai tam giác vuông ADH và EDH có:
AH = EH (cmt)
HD: cạnh chung
Do đó: ΔADH = ΔEDH (2 cạnh góc vuông)
⇒ \(\widehat{DAH}=\widehat{DEH}\)(góc tương ứng)
⇒ ΔAED cân tại D
d) ΔABF cân
Vì AF// HB ⇒ góc BAF = ABH = 30o (so le trong) (1)
Ta có: \(\widehat{ABC}+\widehat{ABF}=180^o\)(kề bù)
Thay: 60o + ABF = 180o
⇒ ABF = 180o - 60o = 120o
Xét ΔABF, ta có:
\(\widehat{ABF}+\widehat{BFA}+\widehat{FAB}=180^o\)(ĐL)
Thay: 120o + BFA + 30o = 180o
⇒ BFA = 180 - 120 - 30 = 30 (2)
Từ (1) và (2) suy ra: ΔABF cân tại B.
1
B A H C M D
a) Xét \(\Delta\)ABC:AB2+AC2=9+16=25=BC2=>\(\Delta\)ABC vuông tại A
b) Xét \(\Delta\)ABH và\(\Delta\)DBH:
BAH=BDH=90
BH chung
AB=DB
=>\(\Delta\)ABH=\(\Delta\)DBH(cạnh huyền-cạnh góc vuông)=>ABH=DBH=>BH là tia phân giác góc ABC
c) Áp dụng Định lý sau:"trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền"cho tam giác vuông ABC, ta có:AM=1/2BC=CM
Suy ra \(\Delta\)AMC cân tại M
2.
C B A H
a) Áp dụng Định lý Pythagoras cho tam giác vuông ABH, ta có:
AB2=BH2+AH2=22+42=>AB=\(\sqrt{20}\)cm
Áp dụng Định lý Pythagoras cho tam giác vuông ACH, ta có:
AC2=AH2+CH2=42+82=>AC=\(\sqrt{80}\)cm
b) Xét \(\Delta\)ABC:AB<AC(Suy ra trực tiếp từ kết quả câu a)
Suy ra: B>C (Định lý về cạnh và góc đối diện trong tam giác)
Ta có : tam giác AMH = tam giác AMK
=> AH = AK
Xét tam giác AHI và tam giác AKI có :
AH = AK
góc HAI = góc IAK ( vì AI là phương giác )
AI chung
=> tam giác AHI = tam giác AKI
=> góc AHI = góc AKI = 180 độ / 2 = 90 độ
và HI = IK = HK/ 2 = 6/2 = 3
Xét tam giác vuông AIK vuông tại I có :
AI = \(\sqrt{AK^2-IK^2}=\sqrt{5^2-3^2}=4\)
=> AI = 4 cm
Ta có hình vẽ:
A B C M H K
(Ảnh ko chuẩn lắm)
Vì \(\Delta ABC\)cân tại A nên AM vừa là tia phân giác, vừa là đường cao của \(\Delta ABC\)
=> MB=MC(t/chất của đường cao trong tam giác cân, tự chứng minh nhé)
Xét \(\Delta MBH\)và \(\Delta MCK:\)
BM=CM(cmt)
\(\widehat{HBM}=\widehat{KCM}\)( \(\Delta ABC\)cân tại A)
\(\Rightarrow\Delta HBM=\Delta KCM\left(ch-gn\right)\)
=> HB=KC( 2 cạnh tương ứng)
Mà AB=AC => AH=AK
Xét \(\Delta AHI\)và \(\Delta AKI:\)
AH=AK (cmt)
AI: cạnh chung
\(\widehat{HAI}=\widehat{KAI}\)(gt)
\(\Rightarrow\Delta AHI=\Delta AKI\left(c-g-c\right)\)
=> HI=IK(2 cạnh tương ứng)
\(\Rightarrow IK=\frac{HK}{2}=\frac{6}{2}=3cm\)
Lại có: AH=AK => \(\Delta AHK\)cân tại A
=> AI là đường cao của \(\Delta AHK\)
Xét \(\Delta AIK\)vuông tại I có:
Áp dụng định lý Py- ta-go, ta có:
AI2+IK2=AK2
=> AI2=AK2-IK2
=> AI2=52-32
=> AI2=16
=> AI=4cm
Vậy AI=4cm
a) Áp dụng tính chất tổng ba góc của một tam giác ta có:
A+B+C=1800
Mà A=900(góc vuông)
C=470
=> B=180-90-47=430
ĐS:.................................
#Châu's ngốc
a: Xét ΔAMB và ΔAMC có
AB=AC
\(\widehat{BAM}=\widehat{CAM}\)
AM chung
Do đó: ΔAMB=ΔAMC
b: ta có: ΔABC cân tại A
mà AM là đường phân giác
nên AM là đường cao