cho so nguyen x sao cho x : 7 du 2 chung to rang 2x +3 chia het cho 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Goi y
B1 X+3 chia het cho 5 7 9
B2 a ; Nhan x-1 vs 2 Roi tru cho nhau
b ; nhan x+1 vs 3
B3 nhan 3n +4 vs 4 ; 4n +5 vs3 roi tru
Bài 1
1+2-3-4+5+6-7-8+9+10-....+2006-2007-2008+2009
=1+(2-3-4+5)+(6-7-8+9)+...+(2006-2007-2008+2009)
=1+0+0+....+0
=1
Bài 2
Ta có: S=3^1+3^2+...+3^2015
3S=3^2+3^3+...+3^2016
=> 3S-S=(3^2+3^3+...+3^2016)-(3^1+3^2+...+3^2015)
2S=3^2016-3^1
S=\(\frac{3^{2016}-3}{2}\)
Ta có \(3^{2016}=3^{4K}=\left(3^4\right)^K=\left(81\right)^K=.....1\)
=> \(S=\frac{3^{2016}-3}{2}=\frac{....1-3}{2}=\frac{....8}{2}\)
=> S có 2 tận cùng 4 hoặc 9
mà S có số hạng lẻ => S có tận cùng là 9
Ta có : 2S=3^2016-3(=)2S+3=3^2016 => X=2016
1)Số 996 chia cho n dư 16 nên 996−16=980 chia hết cho n và n>16)
Số 632 chia cho n dư 16 nên 632−16=616 chia hết cho n và n>16
Do đó, n là ước chung của 980 và 616.
Có 980=22.5.72 và 616=23.7.11 nên ƯCLN (980;616)=22.7=28.
Suy ra n là ước của 28.
Mà n>16 nên n=28.
Đáp số: n=28.
1) Biet rang 996 va 632 khi chia cho n deu du 16 . Tim n.
2) Chung minh rang 7n + 10 va 5n + 7 la hai so nguyen to cung nhau ( n thuoc N )
3) Biet rang 7a + 2b chia het cho 13 (a,b thuoc N) . Chung minh rang 10a + b cung chia het cho 13
Được cập nhật Bùi Văn Vương
1)Số 996 chia cho n dư 16 nên 996−16=980 chia hết cho n và n>16)
Số 632 chia cho n dư 16 nên 632−16=616 chia hết cho n và n>16
Do đó, n là ước chung của 980 và 616.
Có 980=22.5.72 và 616=23.7.11 nên ƯCLN (980;616)=22.7=28.
Suy ra n là ước của 28.
Mà n>16 nên n=28.
1)
gọi ba số tự nhiên liên tiếp là a;a+1;a+2
ta có :
a+(a+1)+(a+2)=3.a+3=3.(a+1) chia hết cho 3
=>dpcm
2) gọi 5 số tự nhiên liên tiếp đó là a;a+1;a+2a;a+3;a+4
ta có :a+(a+1)+(a+2)+(a+3)+(a+4)=5a+10=5a+2.5=5(a+2) chia hết cho 5
=>dpcm
A=2+22+23+24+....+230
=(2+22+23)+(24+25+26)+...+(228+229+230)
=1(2+22+23)+23(2+22+23)+...+227(2+22+23)
=1.7+23.7+25.7+...+227.7
=7(1+23+25+...+227)
vì 7:7-->A:7
\(A=2+2^2+2^3+2^4+...+2^{29}+2^{30}\)
\(=\left(2^{ }+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{28}+2^{29}+2^{30}\right)\)
\(=2.\left(1+2+2^2\right)+2^{^{ }4}.\left(1+2+2^2\right)+...+2^{28}.\left(1+2+2^2\right)\)
\(=2.7+2^4.7+...+2^{28}.7\)
\(=7.\left(2+2^4+...+2^{28}\right)\)
\(\Rightarrow A⋮7\)
Tổng hay hiệu. Chắc là tổng.
Ta có:
a = 27k + 11 = 45h + 7
27k + 11 + 45h + 7 = 27k + 45k + 18.
Vì 27k, 45h, 18 \(⋮\) 9 nên 27k + 45k + 18 \(⋮\) 9.
\(\Rightarrow\) Điều phải chứng minh
x chia 7 dư 2
=> x=7k+2 (k E Z)
=> 2x+3=2(7k+2)+3=14k+4+3=14k+7=7(2k+1) chia hết cho 7 (đpcm)