K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt \(A=\frac{1}{3}+\frac{2}{3^2}+...+\frac{2019}{3^{2019}}\)

=>\(3A=1+\frac{2}{3}+...+\frac{2019}{3^{2018}}\)

=>\(2A=1+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{2018}}-\frac{2019}{3^{2019}}\)

Đặt \(B=1+\frac{1}{3}+...+\frac{1}{3^{2018}}\)

=>\(2B=3-\frac{1}{3^{2018}}\)=>\(B=\frac{3-\frac{1}{3^{2018}}}{2}\)

=>\(2A=\frac{3-\frac{1}{3^{2018}}}{2}-\frac{2019}{3^{2019}}=\frac{\frac{3^{2019}-1}{3^{2018}}}{2}-\frac{2019}{3^{2019}}\)

\(=\frac{3^{2019}-1}{3^{2018}.2}-\frac{2019}{3^{2019}}=\frac{3\left(3^{2019}-1\right)-2019.2}{3^{2019}.2}\)

Nhầm tí

dòng thứ 2 từ dưới lên cm bé hơn 0,75 luôn nhá

16 tháng 8 2023

a, 34.275.(32)3 = 34.(33)5.36 = 34.315.36 = 325

b, (23)4.46.32 = 212.212.25 = 229

c, 32019.62019: 22019 = 32019.32019.22019:22019 = (3.3)2019= 92019

d, 1258.(52)4 = (53)8.58 = 532

 

15 tháng 2 2020

Đặt  A=\(\frac{1}{3}+\frac{2}{3^2}+.....+\frac{2019}{3^{2019}}\)

3A=\(1+\frac{2}{3}+.....+\frac{2019}{3^{2018}}\)

3A - A = \(\left(1+\frac{2}{3}+...+\frac{2018}{3^{2017}}+\frac{2019}{3^{2018}}\right)\) -\(\left(\frac{1}{3}+....+\frac{2017}{3^{2017}}+\frac{2018}{3^{2018}}+\frac{2019}{3^{2019}}\right)\)

2A = \(1+\frac{1}{3}+...+\frac{1}{3^{2018}}-\frac{2019}{3^{2019}}\)

Đặt B=\(1+\frac{1}{3}+....+\frac{1}{3^{2018}}\)

3B =\(3+1+....+\frac{1}{3^{2017}}\)

3B - B=\(\left(3+1+....+\frac{1}{3^{2017}}\right)\)-\(\left(1+\frac{1}{3}+...+\frac{1}{3^{2018}}\right)\)

2B =\(3-\frac{1}{3^{2018}}\)

Ta có:2A= B - \(\frac{2019}{3^{2019}}\)

4A = 2B -\(\frac{2.2019}{3^{2019}}\)

4A=\(\left(3-\frac{1}{3^{2018}}\right)\)-\(\frac{2.2019}{3^{2019}}\)

A=\(\frac{3}{4}-\frac{1}{3^{2018}.4}-\frac{2019}{3^{2019}.2}\)<\(\frac{3}{4}\)=0,75  

Suy ra :\(\frac{1}{3}+\frac{2}{3^2}+...+\frac{2019}{3^{2019}}\)< 0,75 (đpcm)

10 tháng 12 2020

A=32019+1+3+32+33+...+32018

⇒A=1+3+32+...+32018+32019 

⇒3A=3×(1+3+3^2+3^3+....+3^2019)

3A=3+3^2+3^3+....+3^2020

3A-A=(3+3^2+3^3+....+3^2020) -(1+3+3^2+....+3^2019)

2A= 3^2020-1

⇒ A =( 3^2020-1):2

A=32019+1+3+32+33+...+32018

⇒A=1+3+32+...+32018+32019 

⇒3A=3×(1+3+3^2+3^3+....+3^2019)

⇒3A=3+3^2+3^3+....+3^2020

⇒3A-A=(3+3^2+3^3+....+3^2020) -(1+3+3^2+....+3^2019)

⇒2A= 3^2020-1

⇒ A =( 3^2020-1):2

14 tháng 10 2021

\(A=1+3+3^2+3^3+...+3^{2018}+3^{2019}\)

\(=\left(1+3\right)+3^2\left(1+3\right)+...+3^{2018}\left(1+3\right)\)

\(=\left(1+3\right)\left(1+3^2+...+3^{2018}\right)\)

\(=4\left(1+3^2+...+3^{2018}\right)\) ⋮4

⇒A⋮4

\(A=\left(1+3\right)+3^2\left(1+3\right)+...+3^{2018}\left(1+3\right)\)

\(=4\left(1+3^2+...+3^{2018}\right)⋮4\)

10 tháng 11 2021

Ghi lại đề: \(A=3+3^2+...+3^{2020}\)

\(\Rightarrow A=\left(3+3^2+3^3+3^4\right)+...+\left(3^{2017}+3^{2018}+3^{2019}+3^{2020}\right)\\ A=3\left(1+3+3^2+3^3\right)+...+3^{2017}\left(1+3+3^2+3^3\right)\\ A=\left(1+3+3^2+3^3\right)\left(3+...+3^{2017}\right)\\ A=40\left(3+...+3^{2017}\right)⋮10\left(40⋮10\right)\)

21 tháng 4 2023

Trường nào đó?