K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2019

tự vẽ hình nha

a)xét tam giac ACH và tam giac MCH có:

                  AH=HM (gt)

                  góc AHC = góc MHC =90 độ

                   HC chung

 suy ra tam giac ACH=tam giac MCH (c.g.c)

suy ra CA=CM(2 góc tương ứng)

b) ta có:tam giac AHC =tam giac MCH(theo câu a)
    suy ra góc ACH = góc MCH ( 2 góc tương ứng)

  suy ra CB là tia phân giác góc ACM   

     hay góc ACB =góc MCB  (1)

xét tam giac ABC và tam giac MBC có:

               AC=MC ( theo câu a)

         góc ACB = góc MCB (theo (1))

              BC chung

suy ra :tam giac ABC = tam giac MBC (c.g.c)

c,d tự làm.

30 tháng 12 2023

loading... a) Xét hai tam giác vuông: ∆AHC và ∆MHC có:

HC là cạnh ccung

AH = MH (gt)

⇒ ∆AHC = ∆MHC (hai cạnh góc vuông)

b) Do ∆AHC = ∆MHC (cmt)

⇒ ∠ACH = ∠MCH (hai góc tương ứng)

AC = MC (hai cạnh tương ứng)

Do ∠ACH = ∠MCH (cmt)

⇒ ∠ACB = ∠MCB

Xét ∆ABC và ∆MBC có:

AC = MC (cmt)

∠ACB = ∠MCB (cmt)

BC là cạnh chung

⇒ ∆ABC = ∆MBC (c-g-c)

28 tháng 11 2021

a, tam giác ABC vuông tại A (gt) => BC^2 = AC^2 + AB^2 (pytago)

BC = 10; AB = 8 (Gt)

=> AC^2 = 10^2 - 8^2

=> AC^2 = 36

=> AC = 6 do AC > 0

b, xét tam giác AMB và tam giác DMC có : AM = MD (gt)

BM = MC do M là trung điểm của BC(gt)

^BMA = ^DMC (đối đỉnh)

=> tam giác AMB = tam giác DMC (c-g-c)

=> ^ABM = ^MCD mà 2 góc này slt

=> AB // CD 

AB _|_ AC

=> CD _|_ AC 

c, xét tam giác ACE có : AH _|_ AE 

AH = HE

=> tam giác ACE cân tại C 

d, xét tam giác BMD và tam giác CMA có L BM = MC

AM = MD

^BMD = ^CMA

=> tam giác BMD = tam giác CMA (c-g-c)

=> BD = AC

AC = CE do tam giác ACE cân tại C (câu c)

=> BD = CE

1 tháng 3 2020

a,Ta có:
 \(AH\perp BC\) nên \(\widehat{AHB}\) +90 độ.
Vì M là tia đối của HA nên \(\widehat{MHB}\)= 90 độ.
Xét \(\Delta ABH\) và \(\Delta MBH\)có
AH = MH (gt)
\(\widehat{AHB}\) = \(\widehat{MHB}\) (= 90 độ )
BH : cạnh chung

\(\Rightarrow\Delta ABH=\Delta MBH\)( c.g.c )

b,Xét \(\Delta AHCv\text{à}\Delta MHC\)Ta có:

AH = HM (gt)

\(\widehat{AHC}\)\(\widehat{MHC}\)(= 90 độ)

HC : cạnh chung

\(\Rightarrow\Delta AHC=\Delta MHC\)( c.g.c)

\(\Rightarrow\)AC=CM ( t/ứ)

Mà AC = CN (gt) và CM = AC (cmt)

nên CM = CN

\(\Rightarrow\Delta CMN\)cân 

16 tháng 3 2020

a, tam giác ABC vuông tại A (gt) => BC^2 = AC^2 + AB^2 (pytago)

BC = 10; AB = 8 (Gt)

=> AC^2 = 10^2 - 8^2

=> AC^2 = 36

=> AC = 6 do AC > 0

b, xét tam giác AMB và tam giác DMC có : AM = MD (gt)

BM = MC do M là trung điểm của BC(gt)

^BMA = ^DMC (đối đỉnh)

=> tam giác AMB = tam giác DMC (c-g-c)

=> ^ABM = ^MCD mà 2 góc này slt

=> AB // CD 

AB _|_ AC

=> CD _|_ AC 

c, xét tam giác ACE có : AH _|_ AE 

AH = HE

=> tam giác ACE cân tại C 

d, xét tam giác BMD và tam giác CMA có L BM = MC

AM = MD

^BMD = ^CMA

=> tam giác BMD = tam giác CMA (c-g-c)

=> BD = AC

AC = CE do tam giác ACE cân tại C (câu c)

=> BD = CE