cho hàm số bậc nhất y= (m -1) x +m2 -4 (m là tham sồ )có đồ thị là đường thẳng (d) .gọi A,B lần lượt là giao điểm của (d) với các trục tọa độ Ox và Oy .Xác định tọa độ giao điểm A,B và tìm m để 3OA=OB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để d cắt Ox, Oy tại 2 điểm pb thì \(\left(m-1\right)\left(m^2-4\right)\ne0\Rightarrow\left[{}\begin{matrix}m\ne1\\m\ne\pm2\\\end{matrix}\right.\)
Tọa độ A là nghiệm: \(\left\{{}\begin{matrix}y=0\\\left(m-1\right)x+m^2-4=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=0\\x=\frac{4-m^2}{m-1}\end{matrix}\right.\)
\(\Rightarrow OA=\left|\frac{4-m^2}{m-1}\right|=\left|\frac{m^2-4}{m-1}\right|\)
Tọa độ B là nghiệm: \(\left\{{}\begin{matrix}x=0\\y=m^2-4\end{matrix}\right.\) \(\Rightarrow OB=\left|m^2-4\right|\)
\(3OA=OB\Leftrightarrow3\left|\frac{m^2-4}{m-1}\right|=\left|m^2-4\right|\Leftrightarrow\left|m-1\right|=3\) \(\Rightarrow\left[{}\begin{matrix}m=4\\m=-2\left(l\right)\end{matrix}\right.\)
1: Bạn bổ sung đề bài đi bạn
2: Tọa độ A là:
\(\left\{{}\begin{matrix}y=0\\\left(2m-1\right)x-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\\left(2m-1\right)x=4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{4}{2m-1}\\y=0\end{matrix}\right.\)
=>\(OA=\sqrt{\left(\dfrac{4}{2m-1}-0\right)^2+\left(0-0\right)^2}=\dfrac{4}{\left|2m-1\right|}\)
Tọa độ B là:
\(\left\{{}\begin{matrix}x=0\\y=\left(2m-1\right)x-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\left(2m-1\right)\cdot0-4=-4\end{matrix}\right.\)
=>OB=4
Để ΔOAB cân tại O thì OA=OB
=>\(\dfrac{4}{\left|2m-1\right|}=4\)
=>\(\dfrac{1}{\left|2m-1\right|}=1\)
=>\(\left|2m-1\right|=1\)
=>\(\left[{}\begin{matrix}2m-1=1\\2m-1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2m=2\\2m=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=1\\m=0\end{matrix}\right.\)
a: Tọa độ A là:
y=0 và -2x+2=0
=>x=1 và y=0
=>A(1;0)
Tọa độ B là:
x=0 và y=-2x+2
=>x=0 và y=-2*0+2=2
=>B(0;2)
b: C thuộc Ox nên C(x;0)
D thuộc Oy nên D(0;y)
ABCD là hình thoi nên AB=AD và vecto AB=vecto DC
A(1;0); B(0;2); C(x;0); D(0;y)
\(\overrightarrow{AB}=\left(-1;2\right);\overrightarrow{DC}=\left(x;-y\right)\)
\(AB=\sqrt{\left(0-1\right)^2+\left(2-0\right)^2}=\sqrt{5}\)
\(AD=\sqrt{\left(0-1\right)^2+\left(y-0\right)^2}=\sqrt{y^2+1}\)
vecto AB=vecto DC
=>x=-1 và -y=2
=>x=-1 và y=-2
AB=AD
=>y^2+1=5
=>y^2=4
=>y=2(loại) hoặc y=-2(nhận)
Vậy: x=-1 và y=-2
=>C(-1;0); D(0;-2)
Gọi phương trình (d2) có dạng là y=ax+b
(d2) đi qua C và D nên ta có hệ phương trình:
a*(-1)+b=0 và 0*a+b=-2
=>b=-2 và -a=-b=2
=>a=-2 và b=-2
=>y=-2x-2
c: (d1): y=-2x+2 và (d2): y=-2x-2