K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2019

Hình (tự vẽ)

Xét hai tam giác vuông ABD và AHD có:

\(\widehat{BAD}=\widehat{HAD}\)(AD là phân giác)

AD: cạnh chung

Do đó: ΔABD = ΔAHD (cạnh huyền - góc nhọn)

⇒ BD = DH (cạnh tương ứng)

Xét hai tam giác vuông BID và HCD có:

BD = HD (cmt)

\(\widehat{BID}=\widehat{HCD}\)(đối đỉnh)

Do đó: ΔBID = ΔHCD (cạnh góc vuông - góc nhọn kề)

⇒ DI = DC (hai cạnh tương ứng)

⇒ DIC cân tại D.

a: Xét ΔBAD vuông tai A và ΔBHD vuông tại H có

BD chung

góc ABD=góc HBD

Do đó: ΔBAD=ΔBHD

Suy ra: AD=HD

b: ta có: AD=HD

mà HD<DC

nen AD<DC

c: Xét ΔBHK vuông tại H và ΔBAC vuông tạiA có

BH=BA

góc HBK chung

Do đó:ΔBHK=ΔBAC
Suy ra BK=BC

hay ΔBKC cân tại B

a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

góc ABD=góc HBD

=>ΔBAD=ΔBHD

=>DA=DH

b: DA=DH

DH<DC

=>DA<DC

c: Xét ΔBHK vuông tại H và ΔBAC vuông tại A có

BH=BA

góc HBK chung

=>ΔBHK=ΔBAC

=>BK=BC

=>ΔBKC cân tại B

26 tháng 3 2022

undefined

15 tháng 5 2022

https://hoidapvietjack.com/q/804157/cho-tam-giac-abc-vuong-tai-a-tia-phan-giac-cuaabc-cat-ac-tai-d-tu-d-ke-dh-vuong-

 

25 tháng 3 2017

\(a.\)Xét \(\Delta ABD\)vuông tại \(A\) và \(\Delta HBD\) vuông tại \(H\)
              có:   \(AD\): cạnh chung
                       \(\widehat{ABD}=\widehat{HBD}\)    ( vì \(AD\)là tia phân giác của \(\widehat{ABH}\))
      \(\Rightarrow\)\(\Delta ABD=\Delta HBD\) (cạnh huyền - góc nhọn)
      \(\Rightarrow\) \(AD=DH\) ( 2 cạnh tương ứng)

\(b.\) Xét \(\Delta DCH\)vuông tại \(H\)có:    \(DH< DC\)(vì trong tam giác vuông, cạnh huyền là cạnh lớn nhất)
            mà \(AD=DH\)                \(\Rightarrow\)\(AD< DC\)(đpcm)

\(c.\)Xét \(\Delta KBH\)và \(\Delta CBA\)có:    \(\widehat{BHK}=\widehat{BAC}=90^0\)     ( gt )
                                                                       \(BH=AB\)                              ( vì \(\Delta ABD=\Delta HBD\))
                                                                        \(\widehat{KBH}\): góc chung                   ( gt )
                                \(\Rightarrow\)\(\Delta KBH=\Delta CBA\) (g.c.g)
                                \(\Rightarrow\)\(BK=BC\)(2 cạnh tương ứng)
                                \(\Rightarrow\)\(\Delta KBC\)cân  tại  \(B\)

5 tháng 6 2023

a) Xét ΔABD vuông tại A và ΔHBD vuông tại H có:
- BD là cạnh chung

\(\widehat{ABD}=\widehat{HBD}\) (vì BD là tia phân giác \(\widehat{ABC}\))

Suy ra ΔABD = ΔHBD (cạnh huyền - góc nhọn)

b) Từ a) suy ra AD = DH (hai cạnh tương ứng)

c) Đề bị thiếu: Điểm M ở đâu???

5 tháng 6 2023

a) + Vì tam giác ABC vuông tại A (gt)
    => tam giác ABD vuông tại a
    + Vì DH vuông góc với BC (gt)
    => tam giác HBD vuông tại H
    + Xét ΔABD và ΔHBD, có:
       + Chung BD 
       + góc ABD = góc HBD (BD là tia phân giác của góc ABC)
    => ΔABD = ΔHBD (cạnh huyền - góc nhọn)

b) Vì ΔABD = ΔHBD (cmt)
    => AD = DH (2 cạnh tương ứng)

c) Ko đủ dữ kiện 

a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

góc ABD=góc HBD

=>ΔBAD=ΔBHD

=>DA=DH

b: AD=DH

DH<DC

=>AD<DC

c: Xét ΔBKC có

KH,CA là đường cao

KH cắt CA tại D

=>D là trực tâm

=>BD vuông góc KC

Ta có hình vẽ sau: ( tự vẽ hình nha bạn)

a) Xét \(\Delta ABD\)và \(\Delta HBD\):

BD: cạnh chung

\(\widehat{ABD}=\widehat{HBD}\left(gt\right)\)

\(\widehat{BAD}=\widehat{BHD}=90^o\)

=> \(\Delta ABD=\Delta HBD\left(ch-gn\right)\)

=> AD=HD( 2 cạnh tương ứng)

=> đpcm

b)Xét \(\Delta DHC\)vuông tại H có:

DC>HC 

Mà HD=AD ( cm câu a)

=> DC> AD

c) ( Câu này sai đề nè bạn, phải là tam giác BKC cân nha)

Xét \(\Delta ADK\)và \(\Delta HDC:\)

AD=HD( cm câu a)

\(\widehat{ADK}=\widehat{HDC}\left(đđ\right)\)

\(\widehat{DHK}=\widehat{DHC}=90^o\)

=> \(\Delta ADK=\Delta HDC\left(ch-gn\right)\)

=> AK=HC ( 2 cạnh t/ứ)

Mà AB=BH( \(\Delta ABD=\Delta HBD\))

=> AB+AK=HC+BH

=> BK=BC

=> \(\Delta BKC\)cân tại B

=> đpcm

2 tháng 5 2020

A B C D H K

a) Xét tam giác ABD và tam giác HBD có :

BD chung

^ABD = ^HBD ( BD là phân giác của ^B )

=> Tam giác ABD = tam giác HBD ( ch - gn )

=> AD = HD ( hai cạnh tương ứng )

=> AB = AH ( _________________ )

b) Ta có : ^BAD + ^DAK = 1800 ( kề bù )

                ^BHD + ^DHC = 1800 ( kề bù )

Mà ^BAD = ^BHD = 900

=> ^DAK = ^DHC = 900

Xét tam giác DAK và tam giác DHC có :

^DAK = ^DHC ( cmt )

DA = DH ( cmt )

^ADK = ^HDC ( đối đỉnh )

=> Tam giác DAK = tam giác DHC ( g.c.g )

=> AD = DC ( hai cạnh tương ứng )

=> AK = HC ( _________________ )

c) ( Phải là KBC cân nhé . ABC sao được . Với lại bạn nối KC cho mình . Vẽ hơi vội )

Ta có : BK = BA + AK

            BC = BH + HC

Mà BA = BH , AK = HC ( cmt )

=> BK = BC

Xét tam giác KBC có BK = BC ( cmt )

=> Tam giác KBC cân tại B ( đpcm )