K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
11 tháng 4 2019

Do \(\left|z\right|=1\Rightarrow z=cosx+i.sinx\) với \(\left\{{}\begin{matrix}a=cosx\\b=sinx\end{matrix}\right.\)

\(z^3-z+2=cos3x+i.sin3x-cosx-i.sinx+2\)

\(=cos3x-cosx+2+i\left(sin3x-sinx\right)\)

\(=-2sin2x.sinx+2+i\left(2cos2x.sinx\right)\)

\(=2\left(-sin2x.sinx+1+i.cos2x.sinx\right)\)

\(\Rightarrow A=\left|z^3-z+2\right|=2\sqrt{\left(1-sin2x.sinx\right)^2+cos^22x.sin^2x}\)

\(=2\sqrt{1+sin^22x.sin^2x-2sin2x.sinx+cos^22x.sin^2x}\)

\(=2\sqrt{1+sin^2x-4sin^2x.cosx}=2\sqrt{2-cos^2x-4cosx\left(1-cos^2x\right)}\)

\(=2\sqrt{2-cos^2x-4cosx+4cos^3x}=2\sqrt{4a^3-a^2-4a+2}\)

\(A_{min}\) khi \(f\left(a\right)=4a^3-a^2-4a+2\) đạt min

\(f'\left(a\right)=12a^2-2a-4=0\Rightarrow\left[{}\begin{matrix}a=-\frac{1}{2}\\a=\frac{2}{3}\end{matrix}\right.\)

Dựa vào BBT, ta thấy \(f\left(a\right)\) min khi \(a=\frac{2}{3}\) \(\Rightarrow b^2=1-a^2=\frac{5}{9}\)

\(\Rightarrow P=\frac{32}{9}\)

4 tháng 7 2017


23 tháng 6 2018

Bằng cách ước lượng ta có AN' max khi d là tiếp tuyến của đường tròn và ở xa AB nhất. Dễ tìm được khi đó M ( 6;4 ) nên P = 10

Đáp án cần chọn là A

4 tháng 7 2017

Chọn A

10 tháng 1 2019

Đáp án A.

Gọi M x , y  là điểm biểu diễn số phức z.

Từ giả thiết, ta có z − 4 − 3 i = 5 ⇔ x − 4 2 + y − 3 2 = 5 ⇒ M  thuộc đường tròn (C) tâm I 4 ; 3 ,  bán kính R = 5 .  Khi đó P = M A + M B ,  với A − 1 ; 3 , B 1 ; − 1 .

Ta có

P 2 = M A 2 + M B 2 + 2 M A . M B ≤ 2 M A 2 + M B 2 .

Gọi E 0 ; 1  là trung điểm của AB

⇒ M E 2 = M A 2 + M B 2 2 − A B 2 4 .

Do đó P 2 ≤ 4 M E 2 + A B 2  mà

M E ≤ C E = 3 5   s u y   r a   P 2 ≤ 4. 3 5 2 + 2 5 2 = 200.

Với C là giao điểm của đường thẳng EI

với đường tròn (C).

Vậy P ≤ 10 2 .  Dấu “=” xảy ra 

⇔ M A = M B M = C ⇒ M 6 ; 4 ⇒ a + b = 10.

11 tháng 11 2017

Đáp án A

Gọi M(x;y) là điểm biều diễn số phức z.

Từ giả thiết, ta có |z - 4 - 3i| = 5  

=> M thuộc đường tròn (C) tâm I(4;3), bán kính R =   5

Khi đó P = MA + MB với A(-1;3), B(1;-1)

Ta có

Gọi E(0;1) là trung điểm của AB 

Do đó  mà  suy ra 

 

Với C là giao điểm của đường thẳng EI với đường tròn (C)

Vậy Dấu “=”xảy ra  

3 tháng 11 2018

Đáp án A.

Gọi M(x;y) là điểm biểu diễn số phức z.

Từ giả thiết, ta có 

=> M thuộc đường tròn (C) tâm I(4;3), bán kính R =  5

Khi đó P = MA + MB, với A(-1;3), B(1;-1)

Ta có 

Gọi E(0;1) là trung điểm của AB

 

Do đó   mà 

suy ra

Với C là giao điểm của đường thẳng EI với đường tròn (C).

Vậy  Dấu “=” xảy ra 

=> a + b = 10

31 tháng 3 2017

Đáp án A.

Gọi M(x;y) là điểm biểu diễn số phức z.

Từ giả thiết, ta có 

=> M thuộc đường tròn (C) tâm I(4;3), bán kính R =  5 . Khi đó P = MA + MB, với A(-1;3), B(1;-1)

Ta có: 

Gọi E(0;1) là trung điểm của AB 

Do đó  mà suy ra 

Với C là giao điểm của đường thẳng EI với đường tròn (C).

Vậy Dấu “=” xảy ra

13 tháng 12 2019

Đáp án A.

 

Áp dụng bđt Bunhiacopski:

P=6+4=10.

21 tháng 10 2019

Đáp án A.

15 tháng 10 2017

Chọn đáp án B.