Xét số phức z= a+bi thoã mãn |z|=1. tính P=2a+4b2 khi |z3-z+2| đạt giá trị lớn nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bằng cách ước lượng ta có AN' max khi d là tiếp tuyến của đường tròn và ở xa AB nhất. Dễ tìm được khi đó M ( 6;4 ) nên P = 10
Đáp án cần chọn là A
Đáp án A.
Gọi M x , y là điểm biểu diễn số phức z.
Từ giả thiết, ta có z − 4 − 3 i = 5 ⇔ x − 4 2 + y − 3 2 = 5 ⇒ M thuộc đường tròn (C) tâm I 4 ; 3 , bán kính R = 5 . Khi đó P = M A + M B , với A − 1 ; 3 , B 1 ; − 1 .
Ta có
P 2 = M A 2 + M B 2 + 2 M A . M B ≤ 2 M A 2 + M B 2 .
Gọi E 0 ; 1 là trung điểm của AB
⇒ M E 2 = M A 2 + M B 2 2 − A B 2 4 .
Do đó P 2 ≤ 4 M E 2 + A B 2 mà
M E ≤ C E = 3 5 s u y r a P 2 ≤ 4. 3 5 2 + 2 5 2 = 200.
Với C là giao điểm của đường thẳng EI
với đường tròn (C).
Vậy P ≤ 10 2 . Dấu “=” xảy ra
⇔ M A = M B M = C ⇒ M 6 ; 4 ⇒ a + b = 10.
Đáp án A
Gọi M(x;y) là điểm biều diễn số phức z.
Từ giả thiết, ta có |z - 4 - 3i| = 5
=> M thuộc đường tròn (C) tâm I(4;3), bán kính R = 5
Khi đó P = MA + MB với A(-1;3), B(1;-1)
Ta có
Gọi E(0;1) là trung điểm của AB
Do đó mà suy ra
Với C là giao điểm của đường thẳng EI với đường tròn (C)
Vậy Dấu “=”xảy ra
Đáp án A.
Gọi M(x;y) là điểm biểu diễn số phức z.
Từ giả thiết, ta có
=> M thuộc đường tròn (C) tâm I(4;3), bán kính R = 5
Khi đó P = MA + MB, với A(-1;3), B(1;-1)
Ta có
Gọi E(0;1) là trung điểm của AB
Do đó mà
suy ra
Với C là giao điểm của đường thẳng EI với đường tròn (C).
Vậy Dấu “=” xảy ra
=> a + b = 10
Đáp án A.
Gọi M(x;y) là điểm biểu diễn số phức z.
Từ giả thiết, ta có
=> M thuộc đường tròn (C) tâm I(4;3), bán kính R =
5
. Khi đó P = MA + MB, với A(-1;3), B(1;-1)
Ta có:
Gọi E(0;1) là trung điểm của AB
Do đó mà suy ra
Với C là giao điểm của đường thẳng EI với đường tròn (C).
Vậy Dấu “=” xảy ra
Do \(\left|z\right|=1\Rightarrow z=cosx+i.sinx\) với \(\left\{{}\begin{matrix}a=cosx\\b=sinx\end{matrix}\right.\)
\(z^3-z+2=cos3x+i.sin3x-cosx-i.sinx+2\)
\(=cos3x-cosx+2+i\left(sin3x-sinx\right)\)
\(=-2sin2x.sinx+2+i\left(2cos2x.sinx\right)\)
\(=2\left(-sin2x.sinx+1+i.cos2x.sinx\right)\)
\(\Rightarrow A=\left|z^3-z+2\right|=2\sqrt{\left(1-sin2x.sinx\right)^2+cos^22x.sin^2x}\)
\(=2\sqrt{1+sin^22x.sin^2x-2sin2x.sinx+cos^22x.sin^2x}\)
\(=2\sqrt{1+sin^2x-4sin^2x.cosx}=2\sqrt{2-cos^2x-4cosx\left(1-cos^2x\right)}\)
\(=2\sqrt{2-cos^2x-4cosx+4cos^3x}=2\sqrt{4a^3-a^2-4a+2}\)
\(A_{min}\) khi \(f\left(a\right)=4a^3-a^2-4a+2\) đạt min
\(f'\left(a\right)=12a^2-2a-4=0\Rightarrow\left[{}\begin{matrix}a=-\frac{1}{2}\\a=\frac{2}{3}\end{matrix}\right.\)
Dựa vào BBT, ta thấy \(f\left(a\right)\) min khi \(a=\frac{2}{3}\) \(\Rightarrow b^2=1-a^2=\frac{5}{9}\)
\(\Rightarrow P=\frac{32}{9}\)