Cho đường tròn (0,R) đk AB. kẻ tiếp tuyến Ax với đường tròn .trên Ax lấy điểm K (AK >= R). Qua K kẻ tiếp tuyến KM tới đường tròn (O) .Đường thẳng d vuông góc với AB tại O ,d cắt MB tại E. 1. Chứng minh KAOE là tứ giác nội tiếp. 2. OK cắt AM tại I .Chứng minh OI. OK không đổi khi K di chuyển trên Ax. 3. Chứng minh KAOE là hình chữ nhật. 4. Gọi H là trực tâm tam giác KMA. Chứng minh rằng khi K chuyển động trên Ax thì H luôn thuộc 1 đường tròn cố định
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Ta có \(\widehat{KAO}=\widehat{KMO}=90^o\) nên tứ giác KAOM nội tiếp.
2: Theo hệ thức lượng trong tam giác vuông ta có \(OI.OK=OA^2=R^2\)
3: Phần thuận: Dễ thấy H thuộc KI.
Ta có \(\widehat{AHO}=90^o-\widehat{HAI}=\widehat{AMK}=\widehat{AOK}\) nên tam giác AHO cân tại A.
Do đó AH = AO = R.
Suy ra H thuộc (A; R) cố định.
Phần đảo cm tương tự.
Vậy...
a: Xét tứ giác KAOM có
\(\widehat{KAO}+\widehat{KMO}=180^0\)
Do đó: KAOM là tứ giác nội tiếp
b: Xét (O) có
KA là tiếp tuyến
KM là tiếp tuyến
Do đó: KA=KM
hay K nằm trên đường trung trực của AM(1)
Ta có: OA=OM
nên O nằm trên đường trung trực của AM(2)
Từ (1) và (2) suy ra OK là đường trung trực của AM
hay OK\(\perp\)AM
Xét ΔOAK vuông tại A có AI là đường cao
nên \(OI\cdot OK=OA^2\)
a, HS tự làm
b, Ta có OP ⊥ AM, BM ⊥ AM => BM//OP
c, chứng minh ∆AOP = ∆OBN => OP=BN
lại có BN//OP do đó OPNB là hình bình hành
d, Ta có ON ⊥ PI, PM ⊥ JO mà PM ∩ ON = I => I là trực tâm ∆POJ => JI ⊥ PO(1)
Chứng minh PAON hình chữ nhật => K trung điểm PO
Lại có A P O ^ = O P I ^ = I O P ^ => ∆IPO cân tại I => IKPO (2)
Từ (1),(2) => J,I,K thẳng hàng
a: Ta có: \(\widehat{OHM}=\widehat{OAM}=\widehat{OBM}=90^0\)
=>O,H,M,A,B cùng thuộc đường tròn đường kính OM
b: Xét (O) có
MA,MB là các tiếp tuyến
Do đó: MA=MB
=>M nằm trên đường trung trực của AB(1)
Ta có: OA=OB
=>O nằm trên đường trung trực của AB(2)
từ (1) và (2) suy ra OM là đường trung trực của AB
=>OM\(\perp\)AB tại I
Xét ΔOIK vuông tại I và ΔOHM vuông tại H có
\(\widehat{IOK}\) chung
Do đó; ΔOIK~ΔOHM
=>\(\dfrac{OI}{OH}=\dfrac{OK}{OM}\)
=>\(OI\cdot OM=OK\cdot OH\)
https://www.youtube.com/watch?v=u4X117g7vFo