Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Ta có \(\widehat{KAO}=\widehat{KMO}=90^o\) nên tứ giác KAOM nội tiếp.
2: Theo hệ thức lượng trong tam giác vuông ta có \(OI.OK=OA^2=R^2\)
3: Phần thuận: Dễ thấy H thuộc KI.
Ta có \(\widehat{AHO}=90^o-\widehat{HAI}=\widehat{AMK}=\widehat{AOK}\) nên tam giác AHO cân tại A.
Do đó AH = AO = R.
Suy ra H thuộc (A; R) cố định.
Phần đảo cm tương tự.
Vậy...
a, HS tự làm
b, Ta có OP ⊥ AM, BM ⊥ AM => BM//OP
c, chứng minh ∆AOP = ∆OBN => OP=BN
lại có BN//OP do đó OPNB là hình bình hành
d, Ta có ON ⊥ PI, PM ⊥ JO mà PM ∩ ON = I => I là trực tâm ∆POJ => JI ⊥ PO(1)
Chứng minh PAON hình chữ nhật => K trung điểm PO
Lại có A P O ^ = O P I ^ = I O P ^ => ∆IPO cân tại I => IKPO (2)
Từ (1),(2) => J,I,K thẳng hàng
1) Xét tứ giác CIOH có \(\widehat{CIO}+\widehat{CHO}=180^o\)nên là tứ giác nội tiếp
suy ra 4 điểm C,H,O,I cùng thuộc 1 đường tròn
2) vì OI \(\perp\)AC nên OI là đường trung trực của AC
\(\Rightarrow\widehat{AOM}=\widehat{COM}\)
Xét \(\Delta AOM\)và \(\Delta COM\)có :
\(\widehat{AOM}=\widehat{COM}\)( cmt )
OM ( chung )
OA = OC
\(\Rightarrow\Delta AOM=\Delta COM\left(c.g.c\right)\)
\(\Rightarrow\widehat{OAM}=\widehat{OCM}=90^o\)
\(\Rightarrow OC\perp MC\)hay MC là tiếp tuyến của đường tròn O
3) Ta có : \(\hept{\begin{cases}\widehat{AOM}+\widehat{IAO}=90^o\\\widehat{IAO}+\widehat{HBC}=90^o\end{cases}}\Rightarrow\widehat{AOM}=\widehat{HBC}\)
Xét \(\Delta AOM\)và \(\Delta HCB\)có :
\(\widehat{AOM}=\widehat{HBC}\); \(\widehat{MAO}=\widehat{CHB}=90^o\)
\(\Rightarrow\Delta AOM~\Delta HBC\left(g.g\right)\)
4) Gọi N là giao điểm của BC và AM
Xét \(\Delta NAB\)có AO = OB ; OM // BN nên AM = MN
CH // AN \(\Rightarrow\frac{CK}{NM}=\frac{KH}{AM}\left(=\frac{BK}{BM}\right)\)
Mà AM = NM nên CK = KH
\(\Rightarrow\)K là trung điểm của CH
a: Xét tứ giác KAOM có
\(\widehat{KAO}+\widehat{KMO}=180^0\)
Do đó: KAOM là tứ giác nội tiếp
b: Xét (O) có
KA là tiếp tuyến
KM là tiếp tuyến
Do đó: KA=KM
hay K nằm trên đường trung trực của AM(1)
Ta có: OA=OM
nên O nằm trên đường trung trực của AM(2)
Từ (1) và (2) suy ra OK là đường trung trực của AM
hay OK\(\perp\)AM
Xét ΔOAK vuông tại A có AI là đường cao
nên \(OI\cdot OK=OA^2\)