Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chứng minh rằng các số sau là nguyên tố cùng nhau với mọi n thuộc N
n2+3n+1 ; n+1
Đặt UCLN(n2 +3n + 1 , n + 1)= d
n + 1 chia hết cho d => n(n + 1) chia hết cho d
=>N 2 + n chia hết cho d
=> (n2 + 3n + 1 - n2 - n) chia hết cho d
=> 2n + 1 chia hết cho d
n + 1 chia hết cho d => 2(N + 1) chia hết cho d => 2n + 2 chia hết cho d
Mà UCLN(2n + 1 ; 2n + 2) = 1
Vậy n2 + 3n + 1 và n + 1 là 2 số nguyên tố cùng nhau
Đặt UCLN(n2 +3n + 1 , n + 1)= d
n + 1 chia hết cho d => n(n + 1) chia hết cho d
=>N 2 + n chia hết cho d
=> (n2 + 3n + 1 - n2 - n) chia hết cho d
=> 2n + 1 chia hết cho d
n + 1 chia hết cho d => 2(N + 1) chia hết cho d => 2n + 2 chia hết cho d
Mà UCLN(2n + 1 ; 2n + 2) = 1
Vậy n2 + 3n + 1 và n + 1 là 2 số nguyên tố cùng nhau