K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2018

A B C E F H N G

Trên nửa mặt phẳng bờ là NF, dựng tam giác đều NFG. Nối G với A và H.

Ta có: ^CFN + ^AFN = 600; ^AFG + ^AFN = 600 => ^CFN = ^AFG.

Xét \(\Delta\)NFC và \(\Delta\)GFA có: FC=FA;  ^CFN=^AFG; FN=FG => \(\Delta\)NFC = \(\Delta\)GFA (c.g.c)

=> CN=AG (2 cạnh tương ứng) . Mà CN=BN nên BN=AG.

Lại có: \(\Delta\)ABE là tam giác đều với trực tâm H => ^ABH=300

=> ^HBN = ^ABC + ^ABH = ^ABC +300 (1)

^HAG = 3600 - (^FAG + ^FAC + ^BAC + ^HAB) (*)

Do \(\Delta\)NFC=\(\Delta\)GFA => ^FAG = ^FCN (2 góc tương ứng) => ^FAG = ^ACB +600

Dễ thấy: \(\Delta\)ACF đều => ^FAC = 600;   \(\Delta\)ABE đều, trực tâm H => ^HAB = ^ABH = 300

Thay hết vào (*), ta được: ^HAG = 3600 - (^ACB + 600 + 600 + ^BAC + 300)

=> ^HAG = 2100 - (^BAC + ^ACB) = 1800 - (^BAC + ^ACB) +300 = ^ABC + 300

=> ^HAG = ^ABC + 300 (2)

Từ (1) và (2) => ^HBN = ^HAG. 

Xét \(\Delta\)BHN và \(\Delta\)AHG có: BH=AH (Dễ c/m); ^HBN = ^HAG; BN=AG (cmt)

=> \(\Delta\)BHN=\(\Delta\)AHG (c.g.c) => HN=HG (2 cạnh tương ứng).

Xét \(\Delta\)HNF và \(\Delta\)HGF: GN=HG; FN=FG; HF chung => \(\Delta\)HNF=\(\Delta\)HGF (c.c.c)

=> ^HFG = ^HFN = ^GFN/2 = 600/2 = 300; ^NHF = ^GHF

\(\Delta\)BHN=\(\Delta\)AHG => ^BHN = ^AHG . Mà ^BHN + ^NHA = ^BHA = 1200

=> ^AHG + ^NHA = ^NHG = 1200 => ^NHF = ^GHF = ^NHG/2 = 600

Vậy \(\Delta\)FNH có: ^HFN = 300; ^NHF = 600 =>  ^FNH = 900.

Còn 1 cách khác ở trong sách Nâng cao phát triển Toán 7 - T2 nhé!

Mình nghĩ thêm cách này để bạn tham khảo ^-^

30 tháng 6 2018

Cho cái link này không bít có đúng không:

https://cunghoctot.vn/forum/topic/1003161

Chia ra 3 trường hợp .....

ΔABC vuông tại A có AM là trung tuyến

nên MA=MB=MC

AE=EB

AM=BM

=>EM là trung trực của AB

=>EM vuông góc AB

=>EM//AC

MA=MC

FA=FC

=>MF là trung trực của AC

=>MF vuông góc AC

+>ME vuông góc MF

=>góc GMF=90 độ

Gọi D,K lần lượt là trung điểm của AB,AC

=>DM=AC/2; MK=AB/2

GD=1/3ED=1/3*AB*căn 3/2=AB*căn 3/6

KF=AC*căn 3/2

GM=căn 3/6AB+1/2AC

MF=căn 3/2*AC+1/2*AB

=>GN=căn 3/3(AB/2+căn 3/2*AC)

=MF*căn 3/3

=>MF=căn 3*GM

=>góc GFM=30 độ

=>góc MGF=60 độ

28 tháng 2 2022

a.Vì ΔABD,ΔACE đều

→AD=AB,AC=AE,ˆDAB=ˆCAE=60°°

Xét ΔACD,ΔABE có:

AD=ABAD=AB

ˆDAC=ˆDAB+ˆBAC=ˆEAC+ˆCAB=ˆBAE

→ΔADC=ΔABE(c.g.c)

AC=AE

b.Gọi AB∩CD=F

Từ câu b →ˆADC=ˆABE

→ˆADF=ˆFBI

→ˆFIB=180o−ˆIFB−ˆIBF=180o−ˆAFD−ˆFDA=ˆDAF=ˆDAB=60°°

→ˆBIC=180o−ˆFIB=120o→BIC^=180o−FIB^=120°°

c.Từ câu a →BE=CD

Xét ΔADM,ΔABN có:

AD=AB

ˆADM=ˆADC=ˆABE=ˆABN

DM=1212CD=1212BE=BN

→ΔADM=ΔABN(c.g.c)

→AM=AN,ˆDAM=ˆBAN

→ˆMAN=ˆBAN−ˆBAM=ˆDAM−ˆBAM=ˆDAB=60°°

→ΔAMN

26 tháng 2 2020

Trên tia đối của IH lấy điểm K sao cho IH = IK.

Tam giác AEB đều có các đường cao nên đồng thời cũng là phân giác

Lúc đó các góc chia ra bởi 3 đường cao bằng 300

Do đó ^HAF = 900 + ^BAC

^KCF = 3600 - (^ICK + ^ACB + ^ACF) => ^KCF = 900 + ^BAC

Suy ra tam giác AHF = tam giác CKF nen FH = FK, ^AFH = ^CFK, do đó ^HFK = 600

Suy ra HFK là tam giác đều có FI là trung tuyến nên cũng là đường cao

Vậy tam giác FIH là nửa tam giác đều nên có các góc lần lượt là 909;600;300