Cho tam giác abc luôn có 3 góc nhọn, các đườg cao AD,BE,CF cắt nhau tại H, gọi K là gđ của AH
a, AD.HK=AK.HD
b,tìm Max AD.HD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{FAC}\) chung
Do đó: ΔAEB\(\sim\)ΔAFC
Suy ra: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)
hay \(AE\cdot AC=AB\cdot AF\)
b: Xét ΔAEF và ΔABC có
\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
\(\widehat{FAE}\) chung
Do đó: ΔAEF\(\sim\)ΔABC
Suy ra: \(\widehat{AEF}=\widehat{ABC}\)
1: Xét ΔAFH vuông tại F và ΔADB vuông tại D có
\(\widehat{FAH}\) chung
Do đó: ΔAFH~ΔADB
=>\(\dfrac{AF}{AD}=\dfrac{AH}{AB}\)
=>\(AF\cdot AB=AD\cdot AH\)
2: Ta có: \(\dfrac{AF}{AD}=\dfrac{AH}{AB}\)
=>\(\dfrac{AF}{AH}=\dfrac{AD}{AB}\)
Xét ΔAFD và ΔAHB có
\(\dfrac{AF}{AH}=\dfrac{AD}{AB}\)
\(\widehat{FAD}\) chung
Do đó: ΔAFD~ΔAHB
3: Xét ΔAEH vuông tại E và ΔADC vuông tại D có
\(\widehat{EAH}\) chung
Do đó: ΔAEH~ΔADC
=>\(\dfrac{AE}{AD}=\dfrac{AH}{AC}\)
=>\(\dfrac{AE}{AH}=\dfrac{AD}{AC}\)
Xét ΔAED và ΔAHC có
\(\dfrac{AE}{AH}=\dfrac{AD}{AC}\)
\(\widehat{EAD}\) chung
Do đó: ΔAED~ΔAHC
=>\(\widehat{ADE}=\widehat{ACH}\)
Ta có: \(\widehat{ACH}+\widehat{BAC}=90^0\)(ΔFAC vuông tại F)
\(\widehat{ABH}+\widehat{BAC}=90^0\)(ΔABE vuông tại E)
Do đó: \(\widehat{ACH}=\widehat{ABH}\)
Bài 1:
+) Chứng minh tứ giác BFLK nội tiếp:
Ta thấy FAH và LAH là hai tam giác vuông có chung cạnh huyền AH nên AFHL là tứ giác nội tiếp. Vậy thì \(\widehat{ALF}=\widehat{AHF}\) (Hai góc nội tiếp cùng chắn cung AF)
Lại có \(\widehat{AHF}=\widehat{FBK}\) (Cùng phụ với góc \(\widehat{FAH}\) )
Vậy nên \(\widehat{ALF}=\widehat{FBK}\), suy ra tứ giác BFLK nội tiếp (Góc ngoài tại một đỉnh bằng góc trong của đỉnh đối diện)
+) Chứng minh tứ giác CELK nội tiếp:
Hoàn toàn tương tự : Tứ giác AELH nội tiếp nên \(\widehat{ALE}=\widehat{AHE}\) , mà \(\widehat{AHE}=\widehat{ACD}\Rightarrow\widehat{ALE}=\widehat{ACD}\)
Suy ra tứ giác CELK nội tiếp.
Ta có : \(\hept{\begin{cases}\widehat{HAE}+\widehat{AHE}=90^0\\\widehat{HBD}+\widehat{BHD}=90^0\end{cases}}\)
Mà \(\widehat{AHE}=\widehat{BHD}\)Suy ra \(\widehat{HAE}=\widehat{HBD}\)
Xét tam giác BHD và tam giác ACD ,có
\(\widehat{HAE}=\widehat{HBD}\)
\(\widehat{ADC}=\widehat{BDH}=90^0\)
=> Tam giac BHD đồng dạng với tam giác ACD
=> \(\frac{BD}{AD}=\frac{DH}{DC}\)
=> BD.DC = AD.HD
Áp dụng bất đẳng thức Cauchy , ta có
\(AD.HD=BD.DC\le\frac{\left(BD+DC\right)^2}{4}=\frac{a^2}{4}\)
Vậy Max = a2/4 <=> BD = DC <=> D là trung điểm BC
b: góc HID+góc HKD=180 độ
=>HIDK nội tiếp
=>góc HIK=góc HDK
=>góc HIK=góc HCB
=>góc HIK=góc HEF
=>EF//IK
1: Xét ΔDCH vuông tại D và ΔDAB vuông tại D có
\(\widehat{DCH}=\widehat{DAB}\)
Do đó:ΔDCH đồng dạng với ΔDAB
=>\(\dfrac{DC}{DA}=\dfrac{DH}{DB}\)
=>\(DC\cdot DB=DA\cdot DH\)
2: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{EAB}\) chung
Do đó: ΔAEB đồng dạng với ΔAFC
=>\(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)
=>\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
Xét ΔAEF và ΔABC có
\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
\(\widehat{FAE}\) chung
Do đó: ΔAEF đồng dạng với ΔABC