K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2015

\(\frac{\left|x-1\right|+\left|x\right|+x}{3x^2-4x+1}=\frac{-\left(x-1\right)-x+x}{3x^2-3x-x+1}\left(\text{vì }x<0\right)\)

\(=\frac{-\left(x-1\right)}{3x.\left(x-1\right)-\left(x-1\right)}=\frac{-\left(x-1\right)}{\left(x-1\right)\left(3x-1\right)}=\frac{-1}{3x-1}\)

2 tháng 3 2016

15-|-2x+3|.|5+4x|=-19

    |-2x+2|.|5+4x|=-19-15

    |-2x+2|.|5+4x|=-34

giá trị tuyệt đối luôn  ≥ 0 nên bài này ko có giá trị thõa mãn

10 tháng 3 2016

/-2x+3/ . /5+4x/ = 15 - (-19) = 34

25 tháng 7 2016

|x + 3| = x + 4

\(\left|x+3\right|=\pm\left(x+4\right)\)

TH1:

x + 3 = x + 4

x - x = 4 - 3

0 # 1

=> loại

TH2:

x + 3 = - x - 4

x + x = - 4 - 3

2x = -7

x = -7/2

Vậy x = -7/2 

Chúc bạn học tốt ^^

27 tháng 6 2018

Bạn dung tổ hợp phím Shifl+\ (phím \ dưới phím Backspace) để ghi dấu giá trị tuyệt đối |||||||||||||||||||||||||| thấy ko???

Dấu \(\forall x\)tức là với mọi giá trị của x

a) Ta có: \(\left|x-1\right|\ge0,\forall x\)

         \(\Rightarrow\left|x-1\right|+2\ge2,\forall x\)

        Hay \(A\text{​​}\ge2\)

Dấu = xảy ra khi \(x-1=0\Rightarrow x=1\)

Vậy, A có GTNN là 2 khi x=1 

b) Ta có: \(\left|x+1\right|\ge0,\forall x\)

    \(\Rightarrow-\left|x-1\right|\le0,\forall x\)

     \(\Rightarrow2-\left|x-1\right|\le2,\forall x\)

        Hay \(B\text{ }\le2\)

Dấu = xảy ra khi \(x+1=0\Rightarrow x=-1\)

Vậy, B có GTLN là 2 khi x=-1

27 tháng 6 2018

\(A=\left|x-1\right|+2\)

Ta có: \(\left|x-1\right|\ge0\forall x\)

\(\Rightarrow\left|x-1\right|+2\ge2\forall x\)

\(A=2\Leftrightarrow\left|x-1\right|=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)

.Vậy \(A_{min}=2\Leftrightarrow x=1\)

\(B=2-\left|x+1\right|\)

Ta có: \(\left|x+1\right|\ge0\forall x\)

\(\Rightarrow2-\left|x+1\right|\le2\forall x\)

\(B=2\Leftrightarrow\left|x+1\right|=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

Vậy \(B_{min}=2\Leftrightarrow x=-1\)

4 tháng 12 2015

(x2 -1)(/x/ -1) thuộc Z  với mọi  x thuộc Z

18 tháng 5 2017

/x-2/ + /3+x/ = /2-x/ + /3+x/ \(\ge\)/2-x+3+x/ = 5

BĐT giá trị tuyệt đối

19 tháng 5 2017

Với x < -3 thì x - 2 < -5 < 0, 3 + x < 0 nên \(A=\left|x-2\right|+\left|3+x\right|=-x+2-3-x=-2x-1\)  

Do x < -3  nên \(A>5\)

Với \(-3\le x\le2\Rightarrow A=-x+2+x+3=5\)

Với x > 2, \(A=x-2+x+3=2x+1\ge5\)

Vậy \(A\ge5\forall x\in R.\)