Cho \(\Delta ABC\) với G là trọng tâm. Một đường thẳng bất kì qua G cắt các cạnh AB, AC lần lượt tại M, N. Tính \(\dfrac{AB}{AM}+\dfrac{AC}{AN}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi I,J,K lần lượt là trung điểm của các cạnh BC,CA,AB; các đường thẳng d1,d2 đi qua G và song song với AB,AC và cắt AC,AB tại L,H. Khi đó ta có: GL//AB=>AB/GL=BJ/GJ=3; GL//AM=>GL/AM=NG/MN. Nhân hai đẳng thức theo vế thì được AB/AM=3NG/MN (*). Một cách tương tự ta cũng chứng minh được AC/AN=3MG/MN (*). Cộng (*) và (**) theo vế thì được AB/AM+AC/AN=3(NG+MG)/MN=3.
hình tự vẽ nha bn! gọi K,I,P lần lượt là tđ của AB,AC,BC
ta có AG/AP=2/3=> S AMG/ABP=2/3=> AM/AB=2/3
ta có AM/AB=2/3,AG/AP=2/3=> MG//BP (định lý talet đảo)
khi MG//BP=> AB/AM=AP/AG (1)
khi GN//PC (MG//BP) => AP/AG=AC/AN (2)
từ (1),(2)=> AB/AM+AC/AN=2AP/AG=2.3/2=3
Xét 2 tam giác AMG và ABH ta có:
\(\widehat{BAH}\) chung
\(\widehat{AMG}=\widehat{ABH}\) (cặp góc đồng vị do BH//MG)
\(\Rightarrow\Delta AMG\sim\Delta ABH\left(g.g\right)\)
\(\Rightarrow\dfrac{AB}{AM}=\dfrac{AH}{AG}\) (1)
Xét 2 tam giác ANG và ACK có:
\(\widehat{CAK}\) chung
\(\widehat{ANG}=\widehat{ACK}\) (cặp góc đồng vị do CK//GN)
\(\Rightarrow\Delta ANG\sim\Delta ACK\left(g.g\right)\)
\(\Rightarrow\dfrac{AC}{AN}=\dfrac{AK}{AG}\) (2)
Xét hai tam giác BOH và COK ta có:
\(\widehat{BOH}=\widehat{COK}\) (đối đỉnh)
\(BO=CO\) (AO là đường trung tuyến nên O là trung điểm của BC)
\(\widehat{HBO}=\widehat{KCO}\) (so le trong vì BH//MN và CK//MN ⇒ BH//CK)
\(\Rightarrow\Delta BOH=\Delta COK\left(g.c.g\right)\)
\(\Rightarrow HO=OK\) (hai cạnh t.ứng)
\(\Rightarrow HK=2HO\)
Ta lấy (1) + (2) \(\Rightarrow\dfrac{AB}{AM}+\dfrac{AC}{AN}=\dfrac{AH+AK}{AG}=\dfrac{AH+AH+HK}{AG}=\dfrac{2AH+HK}{AG}\)
\(=\dfrac{2AH+2HO}{AG}=\dfrac{2\left(AH+HO\right)}{AG}=\dfrac{2AO}{AG}\)
Mà G là trọng tâm của tam giác ABC \(\Rightarrow AO=\dfrac{3}{2}AG\)
\(\Rightarrow\dfrac{AB}{AM}+\dfrac{AC}{AN}=\dfrac{2\cdot\dfrac{3}{2}AG}{AG}=2\cdot\dfrac{3}{2}=3\left(đpcm\right)\)
Gọi D là trung điểm BC, lần lượt kẻ BP và CQ song song MN
\(\Rightarrow AG=\frac{2}{3}AD\)
\(\left\{{}\begin{matrix}\widehat{QCD}=\widehat{PBD}\left(slt\right)\\BD=DC\left(gt\right)\\\widehat{CDQ}=\widehat{PDQ}\left(dd\right)\end{matrix}\right.\) \(\Rightarrow\Delta CDQ=\Delta BDP\Rightarrow DQ=DP\)
\(MG//BP\Rightarrow\frac{AB}{AM}=\frac{AP}{AG}=\frac{AD+DP}{AG}\)
\(GN//CQ\Rightarrow\frac{AC}{AN}=\frac{AQ}{AG}=\frac{AD-DQ}{AG}\)
\(\Rightarrow\frac{AB}{AM}+\frac{AC}{AN}=\frac{AD+DP+AD-DQ}{AG}=\frac{2AD}{AG}=\frac{2AD}{\frac{2}{3}AD}=3\)