gpt nghiệm nguyên: x^2 + 12y^2 -6xy = 100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(x^2+2y^2+2z^2-2xy-2yz-2z=4\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2z+1\right)=5\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-1\right)^2=5\)
Mà \(5=0^2+1^2+2^2\) nên ta có dễ dàng xét được các TH
Làm tiếp nhé!
b) Ta có: \(x^2+13y^2-6xy=100\)
\(\Leftrightarrow\left(x^2-6xy+9y^2\right)+4y^2=100\)
\(\Leftrightarrow\left(x-3y\right)^2=100-4y^2\)
Mà \(\hept{\begin{cases}\left(x-3y\right)^2\ge0\\100-4y^2\le100\end{cases}}\Rightarrow0\le100-4y^2\le100\)
\(\Rightarrow y\in\left\{0;\pm1;\pm2;\pm3;\pm4;\pm5\right\}\)
Ta có các TH sau:
Nếu \(y=0\Rightarrow x^2=100\Rightarrow x=\pm10\)
Nếu \(y=\pm3\Leftrightarrow\orbr{\begin{cases}\left(x-9\right)^2=64\\\left(x+9\right)^2=64\end{cases}}\Rightarrow x\in\left\{17;1;-17;-1\right\}\)
... Tự làm tiếp nhé
\(P=x^2+2y^2-2xy-8y+2018\)
\(=\left(x+y\right)^2+\left(y-4\right)^2+2002\ge2002\forall x;y\)
Dấu"=" xảy ra<=> \(\hept{\begin{cases}\left(x+y\right)^2=0\\\left(y-4\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=0\\y=4\end{cases}}}\)
\(\Rightarrow x=-4\)
Vậy minP=2002 tại x=-4;y=4
a) \(P=x^2+2y^2-2xy-8y+2018\)
\(=\left(x^2-2xy+y^2\right)+\left(y^2-8y+16\right)+2012\)
\(=\left(x-y\right)^2+\left(y-4\right)^2+2012\)
Vì\(\hept{\begin{cases}\left(x-y\right)^2\ge0;\forall x,y\\\left(y-4\right)^2\ge0;\forall x,y\end{cases}}\)
\(\Rightarrow\left(x-y\right)^2+\left(y-4\right)^2\ge0;\forall x,y\)
\(\Rightarrow\left(x-y\right)^2+\left(y-4\right)^2+2012\ge0+2012;\forall x,y\)
Hay \(P\ge2012;\forall x,y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-4\right)^2=0\end{cases}}\)
\(\Leftrightarrow x=y=4\)
Vậy MIN P=2012 \(\Leftrightarrow x=y=4\)
\(x^2-12y^2+xy-x+3y+5=0\)
\(\Leftrightarrow x^2+x\left(y-1\right)+\left(3y-12y^2+5\right)=0\)
Xét \(\Delta=\left(y-1\right)^2-4.1.\left(3y-12y^2+5\right)=49y^2-14y-19=\left(7y-1\right)^2-20\ge0\)
Để x nhận giá trị nguyên thì \(\Delta\) là số chính phương.
Suy ra \(\left(7y-1\right)^2-20=k^2\Leftrightarrow\left(7y-k-1\right)\left(7y+k+1\right)=20\)
Xét các trường hợp được y = 1 thỏa mãn.
Khi đó ta suy ra \(x=2\) hoặc \(x=-2\)
Vậy (x;y) = (-2;1) ; (2;1)
1.
PT $\Leftrightarrow 4x^2-4xy+4y^2-16=0$
$\Leftrightarrow (2x-y)^2+3y^2=16$
$\Rightarrow 3y^2=16-(2x-y)^2\leq 16$
$\Rightarrow y^2\leq \frac{16}{3}< 9$
$\Rightarrow -3< y< 3$
Mà $y$ nguyên nên $y\in \left\{-2;-1;0;1;2\right\}$
Thay vô ta tìm được:
$(x,y)=(-2, -2), (0,-2), (0,2), (2,0), (-2,0)$
2.
PT $\Leftrightarrow 13y^2=20412$
$\Leftrightarrow y^2=\frac{20412}{13}\not\in\mathbb{N}$ (vô lý)
\(x^2-6xy+4\left(3y^2-25\right)=0\)
\(\Delta'=9y^2-16\left(3y^2-25\right)\ge0\)
\(\Leftrightarrow-39y^2+400\ge0\Leftrightarrow-3\le y\le3\) (do y nguyên)