K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2019

\(x^2-6xy+4\left(3y^2-25\right)=0\)

\(\Delta'=9y^2-16\left(3y^2-25\right)\ge0\)

\(\Leftrightarrow-39y^2+400\ge0\Leftrightarrow-3\le y\le3\) (do y nguyên)

18 tháng 1 2021

a) Ta có: \(x^2+2y^2+2z^2-2xy-2yz-2z=4\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2z+1\right)=5\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-1\right)^2=5\)

Mà \(5=0^2+1^2+2^2\) nên ta có dễ dàng xét được các TH

Làm tiếp nhé!

18 tháng 1 2021

b) Ta có: \(x^2+13y^2-6xy=100\)

\(\Leftrightarrow\left(x^2-6xy+9y^2\right)+4y^2=100\)

\(\Leftrightarrow\left(x-3y\right)^2=100-4y^2\)

Mà \(\hept{\begin{cases}\left(x-3y\right)^2\ge0\\100-4y^2\le100\end{cases}}\Rightarrow0\le100-4y^2\le100\)

\(\Rightarrow y\in\left\{0;\pm1;\pm2;\pm3;\pm4;\pm5\right\}\)

Ta có các TH sau:

Nếu \(y=0\Rightarrow x^2=100\Rightarrow x=\pm10\)

Nếu \(y=\pm3\Leftrightarrow\orbr{\begin{cases}\left(x-9\right)^2=64\\\left(x+9\right)^2=64\end{cases}}\Rightarrow x\in\left\{17;1;-17;-1\right\}\)

... Tự làm tiếp nhé

31 tháng 7 2019

\(P=x^2+2y^2-2xy-8y+2018\)

   \(=\left(x+y\right)^2+\left(y-4\right)^2+2002\ge2002\forall x;y\) 

Dấu"=" xảy ra<=> \(\hept{\begin{cases}\left(x+y\right)^2=0\\\left(y-4\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=0\\y=4\end{cases}}}\)

\(\Rightarrow x=-4\)

Vậy minP=2002 tại  x=-4;y=4

                     

31 tháng 7 2019

a) \(P=x^2+2y^2-2xy-8y+2018\)

\(=\left(x^2-2xy+y^2\right)+\left(y^2-8y+16\right)+2012\)

\(=\left(x-y\right)^2+\left(y-4\right)^2+2012\)

Vì\(\hept{\begin{cases}\left(x-y\right)^2\ge0;\forall x,y\\\left(y-4\right)^2\ge0;\forall x,y\end{cases}}\)

\(\Rightarrow\left(x-y\right)^2+\left(y-4\right)^2\ge0;\forall x,y\)

\(\Rightarrow\left(x-y\right)^2+\left(y-4\right)^2+2012\ge0+2012;\forall x,y\)

Hay \(P\ge2012;\forall x,y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-4\right)^2=0\end{cases}}\)

                        \(\Leftrightarrow x=y=4\)

Vậy MIN P=2012 \(\Leftrightarrow x=y=4\)

7 tháng 10 2017

ta có:

S= 2x^2+9y^2-6xy-6x-12y-2017

=(x^2+9y^2-6xy)+x^2-6x-12y-2017

=(x+3y)^2+x^2-6x-12y-2017

=(x+3y)^2-(4x+12y)+4+(x^2-2x-1)-2021

=[(x+3y)^2-4(x+3y)+4]+(x-1)^2-2021

=(x+3y-2)^2+(x-1)^2-2021

Vì (x+3y-2)^2 lớn hơn hoặc bằng 0 với mọi x,y; (x-1)^2 lớn hơn hoặc bằng 0 với mọi x,y

nên (x+3y-2)^2+(x-1)^2-2021 lớn hơn hoặc bằng-2021 hay S lớn hơn hoặc bằng -2021

Dấu bằng xảy ra khi và chỉ khi:

x+3y-2=0

và x-1=0 (dùng kí hiệu và)

tương đương(dùng dấu) 1+3y=2

và x=1

tương đương(dùng dấu) y=1/3

và x=1

Vậy GTNN của S là -2021 khi x=1,y=1/3

À mình hỏi dấu /x-5/ nghĩa là gì

nhớ tick cho mình nhá

7 tháng 8 2016

kí hiệu a l b là a chia hết cho b nhé
 xy-1 l (x-1)(y-1) <=> xy-1 l y-1 <=> y(x-1)+y-1 l y-1 => x-1 l y-1 
tương tự : y-1 l x-1 
=> \(\orbr{\begin{cases}x-1=y-1\\x-1=1-y\end{cases}}\Rightarrow\orbr{\begin{cases}x=y\\x+y=2\end{cases}}\)

+> x=y \(\Rightarrow x^2-1\)\(\left(x-1\right)^2\) <=> x+1 l x-1 <=> 2 l x-1 => x=2 hoặc x=3
|+> x+y=2 thay vào tương tự như trên nhé 

7 tháng 8 2016

lm hộ t bài 1 nx

8 tháng 11 2017

ta có

\(\left(a^2-ab-a-a\left(a-b+2\right)\right)-\left(\left(a+b+1\right).b-ab-b^2+2b\right)=\)

\(\left(a^2-ab-a-a^2+ab-2a\right)-\left(ab+b^2+b-ab-b^2+2b\right)=\)

\(-3a-3b=-3\left(a+b\right)\)

xét \(a+b=4x^3-5x^2y+6xy^2-12y^2+6x^3+5x^2y-6xy^2+12y^3=10x^3-12y^2+12y^3\Leftrightarrow-3\left(a+b\right)=-30x^3+36y^2-36y^3\)

24 tháng 11 2017

Cảm ơn bạn

17 tháng 7 2015

GTNN đạt tại \(x=5;\text{ }y=\frac{7}{3}\).

Theo đó mà phân tích A thành tổng các bình phương sao cho dấu bằng xảy ra tai x = 5; y = 7/3.

5 tháng 12 2016

 ggia thich ro ra ban