Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:
S= 2x^2+9y^2-6xy-6x-12y-2017
=(x^2+9y^2-6xy)+x^2-6x-12y-2017
=(x+3y)^2+x^2-6x-12y-2017
=(x+3y)^2-(4x+12y)+4+(x^2-2x-1)-2021
=[(x+3y)^2-4(x+3y)+4]+(x-1)^2-2021
=(x+3y-2)^2+(x-1)^2-2021
Vì (x+3y-2)^2 lớn hơn hoặc bằng 0 với mọi x,y; (x-1)^2 lớn hơn hoặc bằng 0 với mọi x,y
nên (x+3y-2)^2+(x-1)^2-2021 lớn hơn hoặc bằng-2021 hay S lớn hơn hoặc bằng -2021
Dấu bằng xảy ra khi và chỉ khi:
x+3y-2=0
và x-1=0 (dùng kí hiệu và)
tương đương(dùng dấu) 1+3y=2
và x=1
tương đương(dùng dấu) y=1/3
và x=1
Vậy GTNN của S là -2021 khi x=1,y=1/3
À mình hỏi dấu /x-5/ nghĩa là gì
nhớ tick cho mình nhá
GTNN đạt tại \(x=5;\text{ }y=\frac{7}{3}\).
Theo đó mà phân tích A thành tổng các bình phương sao cho dấu bằng xảy ra tai x = 5; y = 7/3.
\(A=\left(x^2-6xy+9y^2\right)+4\left(x-3y\right)+4+\left(x^2-10x+25\right)+1975\)
\(A=\left(x-3y\right)^2+4\left(x-3y\right)+4+\left(x-5\right)^2+1975\)
\(A=\left(x-3y+2\right)^2+\left(x-5\right)^2+1975\ge1975\)
GTNN LÀ 1975 tại x=5 và y=7/3