K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2022

mik chỉ cần câu b thôi

hehe

22 tháng 1 2022

Đường tròn ngoại tiếp tam giác ACH cắt IC tại M. Tia AM cắt IB tại Q. CM: M là trung điểm AQ

11 tháng 4 2018

a) Theo tính chất hai tiếp tuyến cắt nhau ta có ngay \(\widehat{PHB}=90^o\)

Lại có D đối xứng với B qua O nên BD là đường kính đường tròn (O)

Vậy thì \(\widehat{BCD}=90^o\Rightarrow\widehat{PCB}=90^o\)

Xét tứ giác BHCP có \(\widehat{PCB}=\widehat{PHB}=90^o\) mà C và H là hai đỉnh kề nhau nên BHCP là tứ giác nội tiếp.

b) Do BHCP là tứ giác nội tiếp nên \(\widehat{HCD}=\widehat{PBH}\)  (Góc ngoài tại một đỉnh bằng góc trong đỉnh đối diện với nó)

Lại có \(\widehat{ACD}=\widehat{ABD}\)   (Hai góc nội tiếp cùng chắn cung AD)

\(\Rightarrow\widehat{ACH}=\widehat{ACD}+\widehat{DCH}=\widehat{ABD}+\widehat{PBH}=\widehat{PBD}=90^o\)

Vậy nên AC vuông góc CH.

c) Tứ giác CHMA nội tiếp nên \(\widehat{CAH}=\widehat{CMH}\)   (Hai góc nội tiếp cùng chắn cung CH)

Lại có \(\widehat{CAH}=\widehat{CAB}=\widehat{CIB}\)   (Hai góc nội tiếp cùng chắn cung CB)

Vậy nên \(\widehat{CMH}=\widehat{CIB}\)

Chúng lại ở vị trí đồng vị nên HM // Bi

Xét tam giác ABQ có H là trung điểm AB, HM // BI nên HM là đường trung bình tam giác ABQ.

Suy ra M là trung điểm AQ.

13 tháng 4 2018

a) Theo tính chất hai tiếp tuyến cắt nhau ta có ngay  = 90 o Lại có D đối xứng với B qua O nên BD là đường kính đường tròn (O) Vậy thì  = 90 o⇒ = 90 o Xét tứ giác BHCP có  = = 90 o  mà C và H là hai đỉnh kề nhau nên BHCP là tứ giác nội tiếp. b) Do BHCP là tứ giác nội tiếp nên  =   (Góc ngoài tại một đỉnh bằng góc trong đỉnh đối diện với nó) Lại có  =    (Hai góc nội tiếp cùng chắn cung AD) ⇒ = + = + = = 90 o Vậy nên AC vuông góc CH. c) Tứ giác CHMA nội tiếp nên  =    (Hai góc nội tiếp cùng chắn cung CH) Lại có  = =    (Hai góc nội tiếp cùng chắn cung CB) 

a: Xét ΔOBA vuông tại B có BH là đường cao

nên OH*OA=OB^2=R^2

b: Xét ΔABC và ΔADB có

góc ABC=góc ADB

góc BAC chung

Do đó; ΔABCđồng dạng với ΔADB

=>AB/AD=AC/AB

=>AB^2=AD*AC

=>AD*AC=AH*AO

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếpb) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.ANCâu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M...
Đọc tiếp

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.

a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp

b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN

Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.

a) C/m: MOCD là hình bình hành

b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.

Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).

a) C/m: MI là tiếp tuyến của (O)

b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.

0
AH
Akai Haruma
Giáo viên
15 tháng 3 2021

Bài này bạn đã đăng rồi mà? Bạn vui lòng không đăng 1 bài nhiều lần gây loãng box toán!!!

15 tháng 3 2021

dạ cô

a) Xét (O) có 

\(\widehat{ADC}\) là góc nội tiếp chắn \(\stackrel\frown{AC}\)

\(\widehat{PAC}\) là góc tạo bởi tiếp tuyến PA và dây cung AC

Do đó: \(\widehat{ADC}=\widehat{PAC}\)(Hệ quả)

hay \(\widehat{ADP}=\widehat{CAP}\)

Xét ΔADP và ΔCAP có 

\(\widehat{ADP}=\widehat{CAP}\)(cmt)

\(\widehat{APD}\) chung

Do đó: ΔADP∼ΔCAP(g-g)

Suy ra: \(\dfrac{PD}{PA}=\dfrac{PA}{PC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(PA^2=PC\cdot PD\)(đpcm)