tim GTNN cua A= \(\frac{x}{\sqrt{x}-1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, A >= 0
Dấu "=" xảy ra <=> x=0
Vậy GTNN của A = 1 <=> x=0
b, B >= 1/2
Dấu "=" xảy ra <=> x=0
Vậy GTNN của B = 1/2 <=> x=0
Tk mk nha
Câu a)
Ta có: \(A=\sqrt{x}+1\)
Ta có: \(\sqrt{x}\ge0\)
Suy ra \(\sqrt{x}+1\ge1\)
Vậy A đạt GTNN là 1 tại x = 0 (tự giải x ra nha)
câu b) Tương tự
Thánh làm biếng chào bn :3
Lời giải:
Ta có:
\(P=\sqrt{x^2+x+1}+\sqrt{x^2-x+1}=\sqrt{\frac{3}{4}(x+1)^2+\frac{1}{4}(x-1)^2}+\sqrt{\frac{3}{4}(x-1)^2+\frac{1}{4}(x+1)^2}\)
\(=\sqrt{(\frac{\sqrt{3}}{2}x+\frac{\sqrt{3}}{2})^2+(\frac{1}{2}x-\frac{1}{2})^2}+\sqrt{(-\frac{\sqrt{3}}{2}x+\frac{\sqrt{3}}{2})^2+(-\frac{1}{2}x-\frac{1}{2})^2}\)
\(\geq \sqrt{(\frac{\sqrt{3}}{2}x+\frac{\sqrt{3}}{2}-\frac{\sqrt{3}}{2}x+\frac{\sqrt{3}}{2})^2+(\frac{1}{2}x-\frac{1}{2}-\frac{1}{2}x-\frac{1}{2})^2}\) (áp dụng BĐT Mincopsky)
\(\Leftrightarrow P\geq 2\)
Vậy $P_{\min}=2$. Dấu "=" xảy ra khi $x=0$
\(\frac{x}{1-x}+\frac{5}{x}-5+5=\frac{x}{1-x}+\frac{5\left(1-x\right)}{x}+5\)
Áp dụng Cauchy: \(A\ge2\sqrt{\frac{x}{1-x}.\frac{5\left(1-x\right)}{x}}+5=2\sqrt{5}+5\)
Dấu = xảy ra <=> \(\frac{x}{1-x}=\frac{5\left(1-x\right)}{x}< =>x=....\)tự giải quyết nốt nhé
\(\sqrt{a+b}.\sqrt{\frac{1}{a}+\frac{1}{b}}=\sqrt{\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)}\)
\(=\sqrt{2+\frac{a}{b}+\frac{b}{a}}\ge\sqrt{2+2\sqrt{\frac{a}{b}.\frac{b}{a}}}=\sqrt{2+2}=2\)
Dấu bằng xảy ra khi a = b.
Giá trị nhỏ nhất của biểu thức trên không tồn tại
Với giá trị \(x\) càng gần số 1 về bên trái thì A là 1 số âm có giá trị tuyệt đối càng lớn, A càng nhỏ
Bạn cứ cho x những giá trị như 0.999999 hay 0.999999999 là thấy
cam on ban nhieu!!