tìm đa thức M= 3xy+x2+12y biết x+3y= 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay x=-1, y=1 vào A ta có:
\(A=4x^3y-xy-\dfrac{9}{2}x^3y+3xy-1\\
=-\dfrac{1}{2}x^3y+2xy-1\\
=-\dfrac{1}{2}.\left(-1\right)^3.1+2.\left(-1\right).1-1\\
=\dfrac{1}{2}-2-1\\
=
-\dfrac{5}{2}\)
C=A+B
=>C=(x2-5xy+5y2-3x+18y)-(-x2+3xy-y2-x-7)
=>C=x2-5xy+5y2-3x+18y+x2-3xy+y2+x+7
=>C=(x2+x2)-(5xy+3xy)+(5y2+y2)-(3x-x)+18y+7
=>C=2x2+6y2-8xy-2x+18y+7
tính giá trị C khó quá nên mình làm có đc 1 nửa thôi, sorry nha
tham khảo
C=A+B
=>C=(x2-5xy+5y2-3x+18y)-(-x2+3xy-y2-x-7)
=>C=x2-5xy+5y2-3x+18y+x2-3xy+y2+x+7
=>C=(x2+x2)-(5xy+3xy)+(5y2+y2)-(3x-x)+18y+7
=>C=2x2+6y2-8xy-2x+18y+7
a) Ta có: \(M+\left(5x^2-2xy\right)=6x^2+9xy-y^2\)
\(\Leftrightarrow M=6x^2+9xy-y^2-5x^2+2xy\)
\(\Leftrightarrow M=x^2+11xy-y^2\)
Vậy: \(M=x^2+11xy-y^2\)
b) Ta có: \(\left(3xy-4y^2\right)-N=x^2-7xy+8y^2\)
\(\Leftrightarrow N=3xy-4y^2-x^2+7xy-8y^2\)
\(\Leftrightarrow N=-x^2+10xy-12y^2\)
Vậy: \(N=-x^2+10xy-12y^2\)
a, (6x2+9xy-y2) - ( 5x2-2xy)=M
=> M= (6x2+9xy-y2) - ( 5x2-2xy)
=> M= 6x2+9xy-y2 - 5x2+2xy
=> M=(6x2- 5x2)+(9xy+2xy)-y2
=>M= 1x2 + 11xy - y2
Vậy M= 1x2 + 11xy - y2
b, N= (3xy-4y2) - (x2-7xy+8y2)
=> N= 3xy-4y2 - x2+7xy-8y2
=> N= (3xy+7xy)-(4y2+8y2)-x2
=> N= 10xy - 12y2 -x2
Vậy N= 10xy - 12y2 -x2
a: Ta có: \(M+5x^2-2xy=6x^2+9xy-y^2\)
\(\Leftrightarrow M=6x^2+9xy-y^2-5x^2+2xy\)
\(\Leftrightarrow M=x^2+11xy-y^2\)
b: Ta có: \(\left(3xy-4y^2\right)-N=x^2-7xy+8y^2\)
\(\Leftrightarrow N=3xy-4y^2-x^2+7xy-8y^2\)
\(\Leftrightarrow N=-x^2+10xy-12y^2\)
21:
a: \(f\left(x\right)=4x^4-x^3-4x^2+x-1\)
\(g\left(x\right)=x^4+4x^3+x-5\)
b: f(x)-g(x)
=4x^4-x^3-4x^2+x-1-x^4-4x^3-x+5
=3x^4-5x^3-4x^2+4
f(x)+g(x)
=4x^4-x^3-4x^2+x-1+x^4+4x^3+x-5
=5x^4+3x^3-4x^2+2x-6
c: g(-1)=1-4-1-5=-9
\(\left(2x^2y+x^2y^2-3xy^2+5\right)-M=2x^3y-5xy^2+4\)
\(M=\left(2x^2y+x^2y^2-3xy^2+5\right)-\left(2x^3y-5xy^2+4\right)\)
\(=2x^2+x^2y^2+2xy^2-2x^3y+1\)
Thay vào,ta có:
\(M=2\cdot\left(-\frac{1}{2}\right)^2+\left(-\frac{1}{2}\right)^2\cdot\left(-\frac{1}{2}\right)^2-2\cdot\left(-\frac{1}{2}\right)^3\cdot\left(-\frac{1}{2}\right)+1\)
\(=\frac{1}{2}+\frac{1}{16}-\frac{1}{8}+1\)
tự tính nốt:3
a) M=\(2xy^2+x^2y^2-3xy^2+5\) - \(2x^3y-5xy^2+4\)
=\(\left(2xy^2-3xy^2-5xy^2\right)\)+ \(x^2y^2\)+ ( 5+4 ) \(-2x^3y\)=\(-6xy^2\)+ \(x^2y^2\)+9 - \(2x^3y\)
bậc của đa thức là: 4
b) tại x=\(\frac{-1}{2}\); y=\(\frac{-1}{2}\)ta có:
M=\(-6xy^2+x^2y^2+9-2x^3y\)=\(-6.\left(\frac{-1}{2}\right)\left(\frac{-1}{2}\right)^2\)+ \(\left(\frac{-1}{2}\right)^2\left(\frac{-1}{2}\right)^2\)+ 9 - \(2\left(\frac{-1}{2}\right)^3\left(\frac{-1}{2}\right)\)
=\(3.\frac{1}{4}\)+ \(\frac{1}{8}\)+ 9 - \(\frac{1}{8}\)=\(\frac{3}{4}\)+ \(\frac{1}{8}\)+ 9 - \(\frac{1}{8}\)=\(\frac{3}{4}+9\)=\(\frac{3}{4}+\frac{36}{4}\)=\(\frac{39}{4}\)
vậy tại \(x=\frac{-1}{2}\); \(y=\frac{-1}{2}\)thì M=\(\frac{39}{4}\)