Giúp mình câu này với.Giải pt : \(x^2+3x+1=\left(x+3\right)\sqrt{x^2+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Coi như bước trên bạn đã làm đúng, giải pt vô tỉ thôi nhé:
TH1: \(x=y\)
\(\Rightarrow x^2+x+2=\sqrt{5x+5}+\sqrt{3x+2}\)
\(\Leftrightarrow x^2-x-1+\left(x+1-\sqrt{3x+2}\right)+\left(x+2-\sqrt{5x+5}\right)=0\)
\(\Leftrightarrow x^2-x-1+\dfrac{x^2-x-1}{x+1+\sqrt{3x+2}}+\dfrac{x^2-x-1}{x+2+\sqrt{5x+5}}=0\)
TH2: \(x=4y+3\)
Đây là trường hợp nghiệm ngoại lai, lẽ ra phải loại (khi bình phương lần 2 phương trình đầu, bạn quên điều kiện nên ko loại trường hợp này)
Dạ em cảm ơn thầy ạ, em ko nhìn ra cách chuyển thành x2 - x - 1 ạ @@

Mình cứ đắn đo câu này mãi. Chắc là bạn chép sai đề. M tự ý sửa đề nếu không phải thì thôi nhé. Sửa đề:
\(\hept{\begin{cases}\left(x+y\right)^2-\left(x+y\right)\sqrt{3}+xy=-1\\x^2+y^2+x+2y=\sqrt{3}+\frac{2}{3}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2+y^2+3xy-\left(x+y\right)\sqrt{3}=-1\left(1\right)\\x^2+y^2+x+2y=\sqrt{3}+\frac{2}{3}\left(2\right)\end{cases}}\)
Lấy (2) - (1) ta được
\(x\left(1+\sqrt{3}\right)+y\left(2+\sqrt{3}\right)-3xy=\frac{3\sqrt{3}+5}{3}\)
Đặt \(\hept{\begin{cases}x\left(1+\sqrt{3}\right)=a\\y\left(2+\sqrt{3}\right)=b\\3\sqrt{3}+5=c\end{cases}}\)
\(\Rightarrow3xy=\frac{3ab}{c}\)từ đây ta có
\(\Leftrightarrow a+b-\frac{3ab}{c}=\frac{c}{3}\)
\(\Leftrightarrow3ac+3bc-9ab-c^2=0\)
\(\Leftrightarrow\left(3a-c\right)\left(c-3b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}c=3a\\c=3b\end{cases}}\)
Tới đây thì đơn giản rồi nhé
Đã đặt \(c=3\sqrt{3}+5\) mà sao đăng lên là nó bị mất.
Cô Vân ơi sửa lỗi này đi cô. Cứ dùng ký hiệu hệ phương trình 3 ẩn thì nó bị mất đi 1 phương trình ah.

Câu 1 là \(\left(8x-4\right)\sqrt{x}-1\) hay là \(\left(8x-4\right)\sqrt{x-1}\)?
Câu 1:ĐK \(x\ge\frac{1}{2}\)
\(4x^2+\left(8x-4\right)\sqrt{x}-1=3x+2\sqrt{2x^2+5x-3}\)
<=> \(\left(4x^2-3x-1\right)+4\left(2x-1\right)\sqrt{x}-2\sqrt{\left(2x-1\right)\left(x+3\right)}\)
<=> \(\left(x-1\right)\left(4x+1\right)+2\sqrt{2x-1}\left(2\sqrt{x\left(2x-1\right)}-\sqrt{x+3}\right)=0\)
<=> \(\left(x-1\right)\left(4x+1\right)+2\sqrt{2x-1}.\frac{8x^2-4x-x-3}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}=0\)
<=>\(\left(x-1\right)\left(4x+1\right)+2\sqrt{2x-1}.\frac{\left(x-1\right)\left(8x+3\right)}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}=0\)
<=> \(\left(x-1\right)\left(4x+1+2\sqrt{2x-1}.\frac{8x+3}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}\right)=0\)
Với \(x\ge\frac{1}{2}\)thì \(4x+1+2\sqrt{2x-1}.\frac{8x-3}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}>0\)
=> \(x=1\)(TM ĐKXĐ)
Vậy x=1

câu a:
\(8x^2-6x+3-2x=\left(2x-1\right)\sqrt{8x^2-6x+3}\)
đặt \(t=\sqrt{8x^2-6x+3}\Leftrightarrow t^2=8x^2-6x+3\)phương trình trở thành
\(t^2-2x=\left(2x-1\right)t\Leftrightarrow t^2-\left(2x-1\right)t-2x=0\)
có \(\Delta=\left(2x-1\right)^2+8x=\left(2x+1\right)^2\Rightarrow\orbr{\begin{cases}t=-1\\t=2x\end{cases}}\)
- \(t=-1\Rightarrow8x^2-6x+3=1\Leftrightarrow8x^2-6x+2=0VN\)
- \(t=2x\Rightarrow8x^2-6x+3=4x^2\Leftrightarrow4x^2-6x+3=0VN\)
Câu b:
Đặt \(t=\sqrt{x^2+1}\Leftrightarrow t^2=x^2+1\left(t>0\right)\)
PT\(\Leftrightarrow t^2-\left(x+3\right)t+3x=0\)
có :\(\Delta=\left(x+3\right)^2-4.3x=\left(x-3\right)^2\Rightarrow\orbr{\begin{cases}t=3\\t=x\end{cases}}\)
- \(t=3\Rightarrow9=x^2+1\Leftrightarrow x^2=8\Leftrightarrow\orbr{\begin{cases}x=2\sqrt{2}\\x=-2\sqrt{2}\end{cases}}\)
- \(t=x\Leftrightarrow x^2=x^2+1VN\)

Dk: \(\orbr{\begin{cases}x\ne\frac{3}{2}\\x\ne-1\end{cases}}\)
\(\frac{\left(x-1\right)}{2x-3}=\frac{\left(1-3x\right)}{\sqrt{\left(x+1\right)^2}}=\frac{\left(1-3x\right)}{!x+1!}\)
\(x\ge1\)
\(\left(x-1\right)\left(x+1\right)=\left(1-3x\right)\left(2x-3\right)\)
x^2-1=11x-6x^2-3
7x^2-11x+2=0
\(\orbr{\begin{cases}x_{ }_{ }_1=\frac{11-\sqrt{65}}{14}< 1\left(loai\right)\\x_2=\frac{11+\sqrt{65}}{14}\left(nhan\right)\end{cases}}\)
\(x< 1\)
-(x^2-1)=11x-6x^2-3
5x^2-11x+4=0
\(\orbr{\begin{cases}x_1=\frac{5-\sqrt{41}}{10}_{ }\left(nhan\right)\\x_2=\frac{5+\sqrt{41}}{10}\left(loai\right)\end{cases}}\)

Đặt \(\hept{\begin{cases}\sqrt{3+x}=a\\\sqrt{6-x}=b\end{cases}}\)
Ta có a2 + b2 = 9
a + b - ab = 3
Tới đâu thì bài toán đơn giản rồi nên bạn tự làm nha

a/ \(2\left(x^2-3x+2\right)=3\sqrt{x^3+8}\)
\(\Rightarrow2x^2-6x+4=3\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}\)
\(\Rightarrow\left(-2\right)\left(x+2\right)+2\left(x^2-2x+4\right)=3\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}\)
Chia 2 vế cho x2 - 2x + 4 ta được:
\(\left(-2\right).\frac{x+2}{x^2-2x+4}+2=3\sqrt{\frac{x+2}{x^2-2x+4}}\)
Đặt \(a=\sqrt{\frac{x+2}{x^2-2x+4}}\left(a\ge0\right)\) ta được:
\(-2a^2-3a+2=0\Rightarrow\left(1-2a\right)\left(a+2\right)=0\Rightarrow\orbr{\begin{cases}a=\frac{1}{2}\left(n\right)\\a=-2\left(l\right)\end{cases}}\)
\(a=\frac{1}{2}\Leftrightarrow\sqrt{\frac{x+2}{x^2-2x+4}}=\frac{1}{2}\Rightarrow\frac{x+2}{x^2-2x+4}=\frac{1}{4}\)
\(\Rightarrow x^2-6x-4=0\Rightarrow\orbr{\begin{cases}x=3+\sqrt{13}\\x=3-\sqrt{13}\end{cases}}\) (cái này tính denta là ra kết quả thôi)
Vậy có 2 nghiệm trên
câu b, c tương tự thôi

cái = 0 của pt 2 ý,,,,bạn thấy nha,,,do x>0 ( ĐKXĐ) ta có \(\frac{5\left(x+49\right)}{\sqrt{5x^2+4x}+21}\ge\frac{x+6}{\sqrt{x^2-3x-18}+6}\)
Từ đó dẫn đến vô lí
b)\(\sqrt{5x^2+4x}-\sqrt{x^2-3x-18}=5\sqrt{x}\)
Đk:....
\(\Leftrightarrow\sqrt{5x^2+4x}-21-\left(\sqrt{x^2-3x-18}-6\right)-\left(5\sqrt{x}-15\right)=0\)
\(\Leftrightarrow\frac{5x^2+4x-441}{\sqrt{5x^2+4}+21}-\frac{x^2-3x-18-36}{\sqrt{x^2-3x-18}+6}-\frac{25x-225}{5\sqrt{x}+15}=0\)
\(\Leftrightarrow\frac{\left(x-9\right)\left(5x+49\right)}{\sqrt{5x^2+4}+21}-\frac{\left(x-9\right)\left(x+6\right)}{\sqrt{x^2-3x-18}+6}-\frac{25\left(x-9\right)}{5\sqrt{x}+15}=0\)
\(\Leftrightarrow\left(x-9\right)\left(\frac{5x+49}{\sqrt{5x^2+4}+21}-\frac{x+6}{\sqrt{x^2-3x-18}+6}-\frac{25}{5\sqrt{x}+15}\right)=0\)
chịu cái trong ngoặc r` bình phương đi :v