Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
từ dòng cuối là sai rồi bạn à
Bạn bỏ dòng cuối đi còn lại đúng rồi
Ở tử đặt nhân tử chung căn x chung rồi lại đặt căn x +1 chung
Ở mẫu tách 3 căn x ra 2 căn x +căn x rồi đặt nhân tử 2 căn x ra
rút gọn được \(\frac{3\sqrt{x}-5}{2\sqrt{x}+1}\)
ĐKXĐ : \(x\ge0\)
\(A=\frac{2}{3}.\frac{2+\left(\frac{2\sqrt{x}-1}{\sqrt{3}}\right)^2+\left(\frac{2\sqrt{x}+1}{\sqrt{3}}\right)^2}{\left[1+\left(\frac{2\sqrt{x}+1}{\sqrt{3}}\right)^2\right]\left[1+\left(\frac{2\sqrt{x}-1}{\sqrt{3}}\right)^2\right]}.\frac{2010}{x+1}\)
\(A=\frac{2}{3}.\frac{2+\left(\frac{2\sqrt{x}-1}{\sqrt{3}}+\frac{2\sqrt{x}+1}{\sqrt{3}}\right)^2-2\left(\frac{2\sqrt{x}-1}{\sqrt{3}}\right)\left(\frac{2\sqrt{x}+1}{\sqrt{3}}\right)}{\left[1+\frac{\left(2\sqrt{x}+1\right)^2}{3}\right]\left[1+\frac{\left(2\sqrt{x}-1\right)^2}{3}\right]}.\frac{2010}{x+1}\)
\(A=\frac{2}{3}.\frac{2+\left(\frac{4\sqrt{x}}{\sqrt{3}}\right)^2-\frac{2\left(2\sqrt{x}-1\right)\left(2\sqrt{x}+1\right)}{3}}{\left(\frac{4x+4\sqrt{x}+4}{3}\right)\left(\frac{4x-4\sqrt{x}+4}{3}\right)}.\frac{2010}{x+1}\)
\(A=\frac{2}{3}.\frac{2+\frac{16x}{3}-\frac{2\left(4x-1\right)}{3}}{\frac{16\left(x+1+\sqrt{x}\right)\left(x+1-\sqrt{x}\right)}{9}}.\frac{2010}{x+1}\)
\(A=\frac{2}{3}.\frac{\frac{6+16x-8x+2}{3}}{\frac{16\left(x+1\right)^2-16x}{9}}.\frac{2010}{x+1}\)
\(A=\frac{x+1}{x^2+x+1}.\frac{2010}{x+1}=\frac{2010}{x^2+x+1}\le2010\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=0\)
...
Đặt biểu thức trên bằng A. ĐK: \(x\ge0;x\ne1\)
\(A=\frac{1+\sqrt{x}+1-\sqrt{x}}{1-x}:\frac{1+\sqrt{x}-1+\sqrt{x}}{1-x}+\frac{1}{1-\sqrt{x}}\)
\(A=\frac{1}{1-x}.\frac{1-x}{2\sqrt{x}}+\frac{1}{1-\sqrt{x}}\)
\(A=\frac{1}{2\sqrt{x}}+\frac{1}{1-\sqrt{x}}\)
\(A=\frac{1-\sqrt{x}+2\sqrt{x}}{2\sqrt{x}\left(1-\sqrt{x}\right)}=\frac{1+\sqrt{x}}{2\sqrt{x}-2x}\)
Khai triển nó ra,ta có:
\(1+y^2=y^2+xy+yz+zx=\left(y+x\right)\left(y+z\right)\)
\(1+x^2=xy+yz+zx+x^2=\left(x+y\right)\left(x+z\right)\)
\(1+z^2=xy+yz+zx+z^2=\left(z+x\right)\left(z+y\right)\)
Ta có:\(P=\Sigma x\sqrt{\frac{\left(y+x\right)\left(y+z\right)\left(z+x\right)\left(z+y\right)}{\left(x+y\right)\left(x+z\right)}}\)
\(\Sigma x\cdot\left(y+z\right)\)
Rút gọn dc như vậy rồi chị làm nốt ạ
Dk: \(\orbr{\begin{cases}x\ne\frac{3}{2}\\x\ne-1\end{cases}}\)
\(\frac{\left(x-1\right)}{2x-3}=\frac{\left(1-3x\right)}{\sqrt{\left(x+1\right)^2}}=\frac{\left(1-3x\right)}{!x+1!}\)
\(x\ge1\)
\(\left(x-1\right)\left(x+1\right)=\left(1-3x\right)\left(2x-3\right)\)
x^2-1=11x-6x^2-3
7x^2-11x+2=0
\(\orbr{\begin{cases}x_{ }_{ }_1=\frac{11-\sqrt{65}}{14}< 1\left(loai\right)\\x_2=\frac{11+\sqrt{65}}{14}\left(nhan\right)\end{cases}}\)
\(x< 1\)
-(x^2-1)=11x-6x^2-3
5x^2-11x+4=0
\(\orbr{\begin{cases}x_1=\frac{5-\sqrt{41}}{10}_{ }\left(nhan\right)\\x_2=\frac{5+\sqrt{41}}{10}\left(loai\right)\end{cases}}\)
cảm ơn bạn