Rút gọn biểu thức :\(N=\frac{x|x-2|}{x^2+8x-20}+12x-3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{\left(x-4\right)^2}+\frac{x-4}{\sqrt{x^2-8x+16}}\)
\(=x-4+\frac{x-4}{\sqrt{\left(x-4\right)^2}}\)
\(=x-4+\frac{x-4}{x-4}\)
\(=x-4+1\)
\(=x-3\)
\(\sqrt{\left(x-4\right)^2}+\frac{x-4}{\sqrt{x^2-8x+16}}\)
\(=x-4+\frac{x-4}{\sqrt{\left(x+4\right)^2}}\)
\(=x-4+\frac{x-4}{x-4}\)
\(=x-4+1\)
= x - 3
\(\frac{\left(\sqrt{x}-3\right)^2+12\sqrt{x}}{3+\sqrt{x}}=\) \(\frac{x-6\sqrt{x}+9+12\sqrt{x}}{3+\sqrt{x}}\)
\(=\frac{x+6\sqrt{x}+9}{3+\sqrt{x}}\)
\(=\frac{\left(3+\sqrt{x}\right)^2}{3+\sqrt{x}}\)
\(=3+\sqrt{x}\)
\(\frac{\left(\sqrt{x}-3\right)^2+12\sqrt{x}}{3+\sqrt{x}}\left(x\ge0\right)=\frac{x-6\sqrt{x}+9+12\sqrt{x}}{3+\sqrt{x}}\)
\(=\frac{x+\sqrt{6}+9}{3+\sqrt{x}}=\frac{\left(\sqrt{x}+3\right)^2}{3+\sqrt{x}}=3+\sqrt{x}\left(x\ge0\right)\)
a, Với x khác 1
\(A=\dfrac{x^2+x+1-3x^2+2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1-x}{\left(x-1\right)\left(x^2+x+1\right)}=-\dfrac{1}{x^2+x+1}\)
b, Ta có \(x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\Rightarrow\dfrac{-1}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}< 0\)
Vậy với x khác 1 thì bth A luôn nhận gtri âm