Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ne5\)
\(2x-1-\frac{\sqrt{x^2-10x+25}}{x-5}\)
\(=2x-1-\frac{\sqrt{\left(x-5\right)^2}}{x-5}\)
\(=2x-1-\frac{\left|x-5\right|}{x-5}\left(1\right)\)
+ Với x > 5 , (1) trở thành : \(2x-1-\frac{x-5}{x-5}=2x-1-1=2x-2\)
+ Với x < 5 , (1) trở thành: \(2x-1-\frac{5-x}{x-5}=2x-1-\left(-1\right)=2x\)
\(P=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\left(\frac{2x-6\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{x+3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\frac{3x+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+9\right)}\right).\frac{\sqrt{x}+3}{2\left(\sqrt{x}-1\right)}\)
\(=\frac{-3\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}+3}{2\sqrt{x}-2}=\frac{-3\sqrt{x}-3}{2x-8\sqrt{x}+6}\)
Nếu đề ko sai thì đấy là kết quả
Rút gọn bt:
Câu 1: a, \(\left(\sqrt{50}+\sqrt{48}-\sqrt{72}\right)2\sqrt{3}\)
b, \(\sqrt{25a}+2\sqrt{45a}-3\sqrt{80a}+2\sqrt{16a}\left(a\ge0\right)\)ư
Câu 2: Cho bt: P =\(\left(1+\frac{\sqrt{a}}{a+1}\right):\left(\frac{1}{\sqrt{a}-1}-\frac{2\sqrt{a}}{a\sqrt{a}+\sqrt{a}-a-1}\right)\)
a, Tìm ĐKXĐ . Rút gọn P
B, Tìm x nguyên để P có gt nguyên
c, Tìm GTNN của P với a >1
Câu 3: Giair các pt
a, \(\sqrt{\left(2x-1\right)^2}=4\)
b, \(\sqrt{4x+4}+\sqrt{9x+9}-8\sqrt{\frac{x+1}{16}}=5\)
\(P=\frac{x\sqrt{x}-8}{x+2\sqrt{x}+4}+3\left(1-\sqrt{x}\right).\)
\(=\frac{\sqrt{x^3}-2^3}{x+2\sqrt{x}+4}+3-3\sqrt{x}\)
\(=\frac{\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+4\right)}{x+2\sqrt{x}+4}+3-3\sqrt{x}\)
\(=\sqrt{x}-2+3-3\sqrt{x}=-2\sqrt{x}+1\)
\(Q=\frac{2P}{1-P}=\frac{2\left(-2\sqrt{x}+1\right)}{1-\left(-2\sqrt{x}+1\right)}\)
\(=\frac{-4\sqrt{x}+2}{1+2\sqrt{x}-1}=\frac{-2\sqrt{x}+1}{\sqrt{x}}\)
\(=\frac{-2\sqrt{x}}{\sqrt{x}}+\frac{1}{\sqrt{x}}=-2+\frac{1}{\sqrt{x}}\)
\(Q\in Z\Leftrightarrow-2+\frac{1}{\sqrt{x}}\in Z\Rightarrow\frac{1}{\sqrt{x}}\in Z\)
\(\Rightarrow1\)\(⋮\)\(\sqrt{x}\)\(\Rightarrow\sqrt{x}\inƯ_1\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{x}=1\\\sqrt{x}=-1\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x\in\varnothing\end{cases}}}\)
Vậy \(Q\in Z\Leftrightarrow x=1\)
\(A=\dfrac{\sqrt{2+\sqrt{4-x^2}}\left(\sqrt{\left(2+x\right)^3}-\sqrt{\left(2-x\right)^3}\right)}{4+\sqrt{4-x^2}}\)
\(\Rightarrow A=\sqrt{\left(2+x\right)^{^{ }3}}-\sqrt{\left(2-x\right)^3}=\left(\sqrt{2+x}-\sqrt{2-x}\right)\left(4+\sqrt{4-x^2}\right)\)
\(\Rightarrow A=\dfrac{\sqrt{4+2\sqrt{4-x^2}}\left(\sqrt{2+x}-\sqrt{2-x}\right)\left(4+\sqrt{4-x^2}\right)}{\sqrt{2}\left(4+\sqrt{4-x^2}\right)}\)
\(\Rightarrow A=\dfrac{\left(\sqrt{2+x}+\sqrt{2-x}\right)\left(\sqrt{2+x}-\sqrt{2-x}\right)}{\sqrt{2}}=2\sqrt{2}\)
\(\sqrt{\left(x-4\right)^2}+\frac{x-4}{\sqrt{x^2-8x+16}}\)
\(=x-4+\frac{x-4}{\sqrt{\left(x-4\right)^2}}\)
\(=x-4+\frac{x-4}{x-4}\)
\(=x-4+1\)
\(=x-3\)
\(\sqrt{\left(x-4\right)^2}+\frac{x-4}{\sqrt{x^2-8x+16}}\)
\(=x-4+\frac{x-4}{\sqrt{\left(x+4\right)^2}}\)
\(=x-4+\frac{x-4}{x-4}\)
\(=x-4+1\)
= x - 3