tim x biet
3/x-5=-4/x-2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 1, Vì |x - 2019| ≥ 0 ; (y - 1)2020 ≥ 0 => |x - 2019| + (y - 1)2020 ≥ 0 => |x - 2019| + (y - 1)2020 + (-2) ≥ (-2) => A ≥ -2
Dấu " = " xảy ra <=> \(\hept{\begin{cases}x-2019=0\\y-1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2019\\y=1\end{cases}}\)
Vậy GTNN A = -2 khi x = 2019 và y = 1
2, Ta có: |x - 3| = |3 - x|
Vì |x - 3| + |x + 4| ≥ |x - 3 + x + 4| = |1| = 1
=> C ≥ 1 - 5 => C ≥ -4
Dấu " = " xảy ra <=> (3 - x)(x + 4) ≥ 0
+) Th1: \(\hept{\begin{cases}3-x\ge0\\x+4\ge0\end{cases}\Rightarrow}\hept{\begin{cases}x\le3\\x\ge-4\end{cases}\Rightarrow}-4\le x\le3\)
+) Th2: \(\hept{\begin{cases}3-x\le0\\x+4\le0\end{cases}\Rightarrow}\hept{\begin{cases}x\ge3\\x\le-4\end{cases}}\)(Vô lý)
Vậy GTNN của C = -4 khi -4 ≤ x ≤ 3
b,
1, Vì |x2 - 25| ≥ 0 => 4|x2 - 25| ≥ 0 => 32 - 4|x2 - 25| ≤ 32 = 9
Dấu " = " xảy ra <=> x2 - 25 = 0 <=> x2 = 25 <=> x = 5 hoặc x = -5
Vậy GTLN B = 9 khi x = 5 hoặc x = -5
2, Đk: x ≠ 5
\(D=\frac{x-4}{x-5}=\frac{\left(x-5\right)+1}{x-5}=1+\frac{1}{x-5}\)
Để D mang giá trị lớn nhất <=> \(\frac{1}{x-5}\)mang giá trị lớn nhất <=> x - 5 mang giá trị nhỏ nhất <=> x - 5 = 1 <=> x = 6
=> \(D=1+1=2\)
Vậy GTLN của D = 2 khi x = 6
`#3107.101107`
\(x(x+5)(x-5) - (x+2)(x^2-2x+4)=5\)
`<=> x(x^2 - 25) - (x^3 + 2^3) = 5`
`<=> x^3 - 25x - x^3 - 8 = 5`
`<=> -25x - 8 = 5`
`<=> -25x = 13`
`<=> x = -13/25`
Vậy, `x = -13/25`
_____
\((x+1)^3 - (x-1)^3 -6(x-1)^2 = -19\)
`<=> x^3 + 3x^2 + 3x + 1 - (x^3 - 3x^2 + 3x - 1) - 6(x^2 - 2x + 1) = -19`
`<=> x^3 + 3x^2 + 3x + 1 - x^3 + 3x^2 - 3x + 1 - 6x^2 + 12x - 6 = -19`
`<=> (x^3 - x^3) + (3x^2 + 3x^2 - 6x^2) + (3x - 3x + 12x) + (1 + 1 - 6) = -19`
`<=> 12x - 4 = -19`
`<=> 12x = -15`
`<=> x = -15/12 = -5/4`
Vậy, `x = -5/4.`
________
`@` Sử dụng các hđt:
`1)` `A^2 + B^2 = (A - B)(A + B)`
`2)` `A^3 + B^3 = (A + B)(A^2 - AB + B^2)`
`3)` `(A - B)^3 = A^3 - 3A^2B + 3AB^2 - B^3`
`4)` `(A + B)^3 = A^3 + 3A^2B + 3AB^2 + B^3`
`5)` `(A - B)^2 = A^2 - 2AB + B^2.`
a: \(x\left(x+5\right)\left(x-5\right)-\left(x+2\right)\left(x^2-2x+4\right)=5\)
=>\(x\left(x^2-25\right)-x^3-8=5\)
=>\(x^3-25x-x^3-8=5\)
=>-25x=13
=>\(x=-\dfrac{13}{25}\)
b: \(\left(x+1\right)^3-\left(x-1\right)^3-6\left(x-1\right)^2=-19\)
=>\(x^3+3x^2+3x+1-x^3+3x^2-3x+1-6\left(x^2-2x+1\right)=-19\)
=>\(6x^2+2-6x^2+12x-6=-19\)
=>12x-4=-19
=>12x=-15
=>x=-5/4
Ta có : ( x+1 ) + ( x + 2 ) + ( x + 3 ) + ( x + 4 ) + ( x + 5 ) = 30
( x + x + x +x +x ) + ( 1 + 2 + 3 + 4 + 5 ) = 30
x * 5 + 15 = 30
x * 5 = 30 - 15
x * 5 = 15
x = 15 : 5
x = 3
Vậy x = 3
Duyệt đi , chúc bạn học giỏi
(x + 1) + (x + 2) + (x + 3) + (x + 4) + (x + 5) = 4 + 5 + 6 + 7 + 8
x + 1 + x + 2 + x + 3 + x + 4 + x + 5 = 30
\(x\)x 5 + 15 = 30
\(x\)x 5 = 30 - 15 = 15
x = 15 : 5 = 3
7 \(\times\) ( 2\(x\) - 5) - 5 \(\times\) (7\(x\) - 2) + 2 \(\times\) (5\(x\) - 7) = (\(x\) - 2) - (\(x\) +4)
14\(x\) - 35 - 35\(x\) + 10 + 10\(x\) - 14 = \(x\) - 2 - \(x\) - 4
(14\(x\) - 35\(x\) + 10\(x\)) - (35 - 10+ 14) = -6
(- 21 \(x\) + 10\(x\)) - (25 + 14) = - 6
-11\(x\) - 39 = - 6
-11\(x\) = - 6 + 39
- 11\(x\) = 33
\(x\) = 33 : (-11)
\(x\) = - 3
14x - 35 -35x + 10 + 10x - 14 = x-2-x-4
-11x -39 = -6
11x = -33
x= -3
F=|x+2|+|x+4|+|x+6| = ( |x+2|+|x+6) + |x+4| = ( |x+2|+|-x-6) + |x+4|
ta có \(\hept{\begin{cases}\left|x+2\right|+\left|-x-6\right|\ge\left|x+2-x-6\right|=4\\\left|x+4\right|\ge0\end{cases}}\)
=> F > 4+0=4
=> Fmin=4
<=> x+4=0 => x=-4
mấy câu còn lại tương tự
\(\left(x+3\right)^4+\left(x+5\right)^4=2\)
\(\Leftrightarrow\left[\left(x+3\right)^2\right]^2+\left[\left(x+5\right)^2\right]^2=4\)
\(\Leftrightarrow\left[x\left(x+3\right)+3\left(x+3\right)\right]^2+\left[x\left(x+5\right)+5\left(x+5\right)\right]^2=4\)
\(\Leftrightarrow\left(x^2+6x+9\right)^2+\left(x^2+10x+25\right)^2=2\) (*)
Ta có: \(\left(x^2+6x+9\right)^2=x^2\left(x^2+6x+9\right)+6x\left(x^2+6x+9\right)+9\left(x^2+6x+9\right)\)
\(=\left(x^4+6x^3+9x^2\right)+\left(6x^3+36x^2+54x\right)+\left(9x^2+54x+81\right)\)
\(=x^4+12x^3+54x^2+108x+81\left(1\right)\)
\(\left(x^2+10x+25\right)^2=x^2\left(x^2+10x+25\right)+10x\left(x^2+10x+25\right)+25\left(x^2+10x+25\right)\)
\(=\left(x^4+10x^3+25x^2\right)+\left(10x^3+100x^2+250x\right)+\left(25x^2+250x+625\right)\)
\(=x^4+20x^3+150x^2+500x+625\left(2\right)\)
Thay (1) và (2) vào (*) ta có:
\(\left(x^4+12x^3+54x^2+108x+81\right)+\left(x^4+20x^3+50x^2+500x+625\right)=2\)
\(\Rightarrow2x^4+32x^3+104x^2+608x+706=2\)\(\Rightarrow2x^4+32x^3+104x^2+608x+704=0\)
......(để suy nghĩ tiếp đã)
bạn sài ròi
gọi x+3 là a, x+5 là a+2
ta có: a^4+(a+2)^4=2
a^4+a^2+4a+4=2
a^2(a^2+1)+4a+2=0
+, a^2(a^2+1)=0
- a=0
- a^2+1=0 ,a=1 và -1
+, 4a+2=0
suy ra a=-1:2
thế này mới đúng ,nhớ đúng nha
20 . 2^x + 1 = 10.4^2 + 1
20 . 2^x + 1 = 10 . 16 + 1
20 . 2^x + 1 = 161
20 . 2^x = 161 - 1
20 . 2^x = 160
2^x = 8
2^x = 2^3
=> x = 3
\(\frac{3}{x-5}=\frac{-4}{x-2}\)
\(\Leftrightarrow3\left(x-2\right)=-4\left(x-5\right)\)
\(\Leftrightarrow3x-6=-4x+20\)
\(\Leftrightarrow3x+4x=20+6\)
\(\Leftrightarrow7x=26\)
\(\Leftrightarrow x=\frac{26}{7}\)
Vậy \(x=\frac{26}{7}\)
\(\Rightarrow-4\left(x-5\right)=3\left(x-2\right)\)
\(-4x+20=3x-6\)
\(-4x-3x=-6-20\)
\(-7x=-26\)
\(x=\frac{26}{7}\)