K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 3 2019

\(x\ne2\)

Áp dụng HĐT \(a^3-b^3=\left(a-b\right)^3+3ab\left(a-b\right)\)

\(\left(\frac{x-3}{x-2}\right)^3-\left(x-3\right)^3=16\)

\(\Leftrightarrow\left(\frac{\left(x-3\right)-\left(x-3\right)\left(x-2\right)}{x-2}\right)^3+\frac{3\left(x-3\right)^2}{\left(x-2\right)}\left(\frac{x-3}{x-2}-x+3\right)=16\)

\(\Leftrightarrow\left(\frac{\left(x-3\right)\left(3-x\right)}{\left(x-2\right)}\right)^3+\frac{3\left(x-3\right)^2}{x-2}\left(\frac{\left(x-3\right)\left(3-x\right)}{x-2}\right)=16\)

\(\Leftrightarrow\left(-\frac{\left(x-3\right)^2}{x-2}\right)^3-3.\left(\frac{\left(x-3\right)^2}{x-2}\right)^2=16\)

Đặt \(\frac{\left(x-3\right)^2}{x-2}=a\)

\(-a^3-3a^2=16\Leftrightarrow a^3+3a^2+16=0\Rightarrow a=-4\)

\(\Rightarrow\frac{\left(x-3\right)^2}{x-2}=-4\Leftrightarrow x^2-2x+1=0\Rightarrow x=1\)

10 tháng 3 2019

@Nguyễn Việt Lâm

11 tháng 4 2020

Hệ phương trình đề cho tương đương

\(\left\{{}\begin{matrix}\frac{1}{2}xy+18=\frac{1}{2}xy+x+y+2\\\frac{1}{2}xy-16=\frac{1}{2}xy+\frac{3}{2}x-y-3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x+y+2=18\\\frac{3}{2}x-y-3=-16\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=16\\\frac{3}{2}x-y=-13\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x+\frac{3}{2}x=3\\x+y=14\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{6}{5}\\y=\frac{74}{5}\end{matrix}\right.\)

KL: ........................

11 tháng 4 2020

em vẫn chưa hiểu bước đầu lắm ạ

30 tháng 3 2020

ĐK: \(x\in R\backslash\left\{-4,-3,-2,-1\right\}\)

PT ban đầu

\(\Leftrightarrow\frac{x+2-x-1}{\left(x+1\right)\left(x+2\right)}+\frac{x+3-x-2}{\left(x+2\right)\left(x+3\right)}+\frac{x+4-x-3}{\left(x+3\right)\left(x+4\right)}+\frac{x+5-x-4}{\left(x+4\right)\left(x+5\right)}=\frac{1}{x+1}-403\\ \Leftrightarrow\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}=\frac{1}{x+1}-403\\ \Leftrightarrow\frac{1}{x+5}=403\\ \Leftrightarrow x+5=\frac{1}{403}\Leftrightarrow x=\frac{-2014}{403}\)

Chúc bạn học tốt nhaok.

30 tháng 3 2020

Sr bạn nha, nhưng điều kiện là \(x\in R\backslash\left\{-5,-4,-3,-2,-1\right\}\). (Xét thiếu :>)

Chúc bạn học tốt nhaok.

25 tháng 6 2018

Link tham khảo: https://diendantoanhoc.net/topic/134563-gi%E1%BA%A3i-ph%C6%B0%C6%A1ng-tr%C3%ACnh-fracx-3x-23-x-3316/

NV
3 tháng 4 2019

\(x\ne\pm2\)

Đặt \(\left\{{}\begin{matrix}\frac{x+3}{x-2}=a\\\frac{x-3}{x+2}=b\end{matrix}\right.\) phương trình trở thành:

\(a^2+6b^2=7ab\)

\(\Leftrightarrow a^2-7ab+6b^2=0\)

\(\Leftrightarrow a^2-ab-6ab+6b^2=0\)

\(\Leftrightarrow a\left(a-b\right)-6b\left(a-b\right)=0\)

\(\Leftrightarrow\left(a-6b\right)\left(a-b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=b\\a=6b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\frac{x+3}{x-2}=\frac{x-3}{x+2}\\\frac{x+3}{x-2}=\frac{6\left(x-3\right)}{x+2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x+3\right)\left(x+2\right)=\left(x-3\right)\left(x-2\right)\\\left(x+3\right)\left(x+2\right)=6\left(x-3\right)\left(x-2\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}5x=-5x\\x^2-7x+6=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=6\end{matrix}\right.\)