K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2019

ta có: b+c<a+b+c=> a/b+c>a/a+b+c(1)

         a+c< a+b+c=> b/a+c>b/a+b+c(2)

         a+b<a+b+c=> c/a+b>c/a+b+c(3)

cộng từng vế của 1, 2,3 ta đpcm

còn phần sau

đợi chút

4 tháng 3 2019

                     Giải

Ta có :\(\frac{a}{b+c}>\frac{a}{a+b+c}\)

\(\frac{b}{c+a}>\frac{b}{a+b+c}\)

\(\frac{c}{a+b}>\frac{c}{a+b+c}\)

\(\Rightarrow\)\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)

Suy ra đpcm

19 tháng 12 2021

\(1,8^8+2^{20}=2^{24}+2^{20}=2^{20}\left(2^4+1\right)=2^{20}\cdot17⋮17\)

\(2,A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{119}+2^{120}\right)\\ A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{119}\left(1+2\right)\\ A=3\left(2+2^3+...+2^{119}\right)⋮3\)

\(A=\left(2+2^2+2^3\right)+...+\left(2^{118}+2^{119}+2^{120}\right)\\ A=2\left(1+2+2^2\right)+...+2^{118}\left(1+2+2^2\right)\\ A=\left(1+2+2^2\right)\left(2+...+2^{118}\right)=7\left(2+...+2^{118}\right)⋮7\\ A=\left(2+2^2+2^3+2^4\right)+...+\left(2^{117}+2^{118}+2^{119}+2^{120}\right)\\ A=2\left(1+2+2^2+2^3\right)+...+2^{117}\left(1+2+2^2+2^3\right)\\ A=\left(1+2+2^2+2^3\right)\left(2+...+2^{117}\right)=15\left(2+...+2^{117}\right)⋮15\)

19 tháng 12 2021

Mọi người giải giúp em với ạ. Em đang cần gấp !!!

1: Xét tứ giác OAEI có \(\widehat{OAI}+\widehat{OEI}=90^0+90^0=180^0\)

nên OAEI là tứ giác nội tiếp

Xét tứ giác OEBK có \(\widehat{OEK}=\widehat{OBK}=90^0\)

nên OEBK là tứ giác nội tiếp

2: Ta có: OAEI là tứ giác nội tiếp

=>\(\widehat{OIE}=\widehat{OAE}=\widehat{OAB}\left(1\right)\)

Ta có: OEBK là tứ giác nội tiếp

=>\(\widehat{OKE}=\widehat{OBE}=\widehat{OBA}\left(2\right)\)

Ta có: ΔOAB cân tại O

=>\(\widehat{OAB}=\widehat{OBA}\left(3\right)\)

Từ (1),(2),(3) suy ra \(\widehat{OIE}=\widehat{OKE}\)

=>\(\widehat{OIK}=\widehat{OKI}\)

=>ΔOKI cân tại O

3: Xét ΔOAI vuông tại A và ΔOBK vuông tại B có

OA=OB

OI=OK

Do đó: ΔOAI=ΔOBK

=>AI=BK

4: Xét tứ giác OACB có \(\widehat{OAC}+\widehat{OBC}=90^0+90^0=180^0\)

nên OACB là tứ giác nội tiếp

=>\(\widehat{OAB}=\widehat{OCB}\)

mà \(\widehat{OAB}=\widehat{OIK}\)

nên \(\widehat{OIK}=\widehat{OCK}\)

=>OICK là tứ giác nội tiếp

25 tháng 12 2014
1\20 + 1\40 = 60\20.40 > 60\30^2 (do 30^2 > 30^2-10^2)
tương tự ta có:
1\21 + 1\39 > 60\30^2
1\22 + 1\38 > 60\30^2
........
1\29 + 1\31 > 60\30^2
=> S > 10.60\30^2 + 1\30 -1\20
=> S > 20\30 + 1\30 -1\20 > 7\12

lại có:
1\21+..+1\25 < 5\21
1\26+..+1\30 < 5\26
....
1\36+..+1\40 < 5\36
=> S < 5\21 + 5\26 + 5\31 + 5\36
=> S < 5.(1\21 + 1\24 + 1\30 + 1\36)
=> S < 5\3.(1\7 + 1\8 + 1\10 + 1\12)
do 1\7 + 1\10 +1\12 < 3\8
=> S < 5\3.(4\8) = 5\6
(cm S > 7\12 gần như adụng cosi ở phổ thông... 1\a + 1\(n-a) >= 2\(a.(n-a)
.......... .
bạn trang L mắc sai lầm nghiêm trọng....
1\21 +..+1\40 < 1\21 +..+1\21 = 20\21 chứ không phải lớn hơn...
bời vì 1\(21+a) < 1\21 với mọi a>0
tương tự S >1\2 chứ không phải < 1\2
để ktra lại rất đơn giản... theo bạn Trang L ta có:
7\12 < 20\21 < S < 1\2 < 5\6
điều này hoàn toàn vô lý với nền toán học thế giới hiện nay
nói cách khác.. theo Trang L ta có:
.. S > 20\21 mà 20\21 > 5\6 => S >5\6 vậy kết luận S < 5\6 kiểu gì đây....?
........ .....
(nhìn bạn Trang L giải tôi cũng tý bị nhầm... nhưng chú ý hơn mới thấy đc bạn ấy bị nhầm BDT, a> b => 1\a < 1\b chư không phải 1\a>1\b)

1: Xét ΔABC có

BD,CE là trung tuyến

BD cắt CE tại G

=>G là trọng tâm

=>GD=1/3BD và GE=1/3CE

mà BD=CE

nên GD=GE

=>GB=GC

2: Xét ΔGBE và ΔGCD có

GB=GC

góc BGE=góc CGD

GE=GD

=>ΔGBE=ΔGCD

3: ΔGBE=ΔGCD

=>BE=CD

=>AB=AC

=>ΔBAC cân tại A

24 tháng 2 2017

A B C M N 1 1

Giải:

a) Ta có: \(AB=AC\) ( \(\Delta ABC\) cân tại A )
\(BM=CN\)

\(\Rightarrow AB-BM=AC-CN\)

\(\Rightarrow AM=AN\)

\(\Rightarrow\Delta AMN\) cân tại A ( đpcm )

b) Trong \(\Delta AMN\) có: \(\widehat{A}+\widehat{M_1}+\widehat{N_1}=180^o\)

\(\Rightarrow\widehat{M_1}+\widehat{N_1}=180^o-\widehat{A}\)

\(\widehat{M_1}=\widehat{N_1}\) ( t/g AMN cân tại A )
\(\Rightarrow2.\widehat{N_1}=180^o-\widehat{A}\)

\(\Rightarrow\widehat{N_1}=\frac{180^o-\widehat{A}}{2}\) (1)

Trong \(\Delta ABC\) có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)

\(\Rightarrow\widehat{B}+\widehat{C}=180^o-\widehat{A}\)

\(\widehat{B}=\widehat{C}\) ( t/g ABC cân tại A )

\(\Rightarrow2.\widehat{C}=180^o-\widehat{A}\)

\(\Rightarrow\widehat{C}=\frac{180^o-\widehat{A}}{2}\) (2)

Từ (1) và (2) \(\Rightarrow\widehat{N_1}=\widehat{C}\)

Mà 2 góc trên ở vị trí đồng vị nên MN // BC ( đpcm )

Vậy...

24 tháng 2 2017

a) Ta có: \(AB-BM=AC-CN\)

\(\Rightarrow AM=AN\)

\(\Rightarrow\Delta AMN\) cân tại A

b) Vì \(\Delta AMN\) cân tại A

\(\Rightarrow\widehat{AMN}=\widehat{ANM}\)

Áp dung tc tổng 3 góc trong 1 t/g ta có:

\(\widehat{AMN}+\widehat{ANM}+\widehat{BAC}=180^o\)

\(\Rightarrow\widehat{AMN}=\frac{180^o-\widehat{BAC}}{2}\left(1\right)\)

Do \(\Delta ABC\) cân tại A

\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)

Áp dung.....:

\(\widehat{ABC}+\widehat{ACB}+\widehat{BAC}=180^o\)

\(\Rightarrow\widehat{ABC}=\frac{180^o-\widehat{BAC}}{2}\left(2\right)\)

Từ (1) và (2) suy ra \(\widehat{AMN}=\widehat{ABC}\)

mà 2 góc này ở vị trí đồng vị nên MN // BC.