K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi M là trung điểm của BC

Vì ΔABC đều

mà M là trug điểm của bC

nên MA vuông góc với BC 

BM=CM=a/2

\(AM=\sqrt{a^2-\left(\dfrac{1}{2}a\right)^2}=\dfrac{a\sqrt{3}}{2}\)

\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=\left|\overrightarrow{CA}+\overrightarrow{BA}\right|=2\cdot AM=2\cdot\dfrac{a\sqrt{3}}{2}=a\sqrt{3}\)

\(\left|\overrightarrow{AB}-\overrightarrow{AC}\right|=\left|\overrightarrow{CA}+\overrightarrow{AB}\right|=CB=a\)

\(\left|\overrightarrow{AB}-\overrightarrow{CA}\right|=\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=a\sqrt{3}\)

vecto AB-vecto BC

=vecto AB+vecto CB

=>|vecto AB+vecto CB|=|vecto BA+vecto BC|=|2vecto BN|(Với N là trung điểm của AC)

=2xBN=a căn 3

NV
5 tháng 11 2021

Do M là trung điểm BC nên: \(\overrightarrow{AM}=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}\)

Tương tự: \(\overrightarrow{BN}=\dfrac{1}{2}\overrightarrow{BA}+\dfrac{1}{2}\overrightarrow{BC}\) ; \(\overrightarrow{CP}=\dfrac{1}{2}\overrightarrow{CA}+\dfrac{1}{2}\overrightarrow{CB}\)

Cộng vế:

\(\overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP}=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}+\dfrac{1}{2}\overrightarrow{BA}+\dfrac{1}{2}\overrightarrow{BC}+\dfrac{1}{2}\overrightarrow{CA}+\dfrac{1}{2}\overrightarrow{CB}\)

\(=\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{BA}\right)+\dfrac{1}{2}\left(\overrightarrow{AC}+\overrightarrow{CA}\right)+\dfrac{1}{2}\left(\overrightarrow{BC}+\overrightarrow{CB}\right)=\overrightarrow{0}\)

b. Từ câu a ta có:

\(\overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{AO}+\overrightarrow{OM}+\overrightarrow{BO}+\overrightarrow{ON}+\overrightarrow{CO}+\overrightarrow{OP}=\overrightarrow{0}\)

\(\Leftrightarrow-\overrightarrow{OA}+\overrightarrow{OM}-\overrightarrow{OB}+\overrightarrow{ON}-\overrightarrow{OC}+\overrightarrow{OP}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{OM}+\overrightarrow{ON}+\overrightarrow{OP}\) (đpcm)

AH
Akai Haruma
Giáo viên
22 tháng 10 2020

Lời giải:

a)

$2\overrightarrow{AD}=\overrightarrow{AD}+\overrightarrow{AD}$

$=\overrightarrow{AB}+\overrightarrow{BD}+\overrightarrow{AC}+\overrightarrow{CD}$

$=\overrightarrow{AB}+\overrightarrow{AC}+(\overrightarrow{BD}+\overrightarrow{CD})$

$=\overrightarrow{AB}+\overrightarrow{AC}$

$\Rightarrow \overrightarrow{AD}=\frac{\overrightarrow{AB}+\overrightarrow{AC}}{2}$

Tương tự:

$\overrightarrow{BE}=\frac{\overrightarrow{BC}+\overrightarrow{BA}}{2}$

$\overrightarrow{CF}=\frac{\overrightarrow{CA}+\overrightarrow{CB}}{2}$

Cộng lại:

$\overrightarrow{AD}+\overrightarrow{BE}+\overrightarrow{CF}=\frac{\overrightarrow{AB}+\overrightarrow{BA}+\overrightarrow{AC}+\overrightarrow{CA}+\overrightarrow{BC}+\overrightarrow{CB}}{2}=\frac{\overrightarrow{0}+\overrightarrow{0}+\overrightarrow{0}}{2}=\overrightarrow{0$}$

Ta có đpcm.

b)

$\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{MD}+\overrightarrow{DA}+\overrightarrow{ME}+\overrightarrow{EB}+\overrightarrow{MF}+\overrightarrow{FC}$

$=(\overrightarrow{MD}+\overrightarrow{ME}+\overrightarrow{MF})+(\overrightarrow{DA}+\overrightarrow{EB}+\overrightarrow{FC})$

$=(\overrightarrow{MD}+\overrightarrow{ME}+\overrightarrow{MF})-(\overrightarrow{AD}+\overrightarrow{BE}+\overrightarrow{CF})$

$=\overrightarrow{MD}+\overrightarrow{ME}+\overrightarrow{MF}-\overrightarrow{0}$ (theo phần a)

$=\overrightarrow{MD}+\overrightarrow{ME}+\overrightarrow{MF}$

Ta có đpcm.

26 tháng 12 2023

Xét ΔABC có AD là phân giác

nên \(\dfrac{BD}{DC}=\dfrac{AB}{AC}=\dfrac{5}{7}\)

=>\(\dfrac{BD}{5}=\dfrac{DC}{7}\)

mà BD+DC=BC=6

nên \(\dfrac{BD}{5}=\dfrac{CD}{7}=\dfrac{BD+CD}{5+7}=\dfrac{6}{12}=\dfrac{1}{2}\)

=>BD=2,5; CD=3,5

=>\(\dfrac{BD}{BC}=\dfrac{5}{12};\dfrac{CD}{CB}=\dfrac{7}{12}\)

\(\overrightarrow{AD}=\overrightarrow{AB}+\overrightarrow{BD}\)

\(=\overrightarrow{AB}+\dfrac{5}{12}\cdot\overrightarrow{BC}\)

\(=\overrightarrow{AB}+\dfrac{5}{12}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)\)

\(=\dfrac{7}{12}\cdot\overrightarrow{AB}+\dfrac{5}{12}\cdot\overrightarrow{AC}\)

=>Chọn C

17 tháng 12 2023

Câu 4:

Áp dụng định lý Pytago

\(BC^2=AB^2+AC^2\Rightarrow BC=2\)

Ta có:

\(\overrightarrow{CA}.\overrightarrow{BC}=-\overrightarrow{CA}.\overrightarrow{CB}=-\dfrac{CA^2+CB^2-AB^2}{2}=-\dfrac{2+4-2}{2}=-2\)

Câu 5:

Gọi M là trung điểm BC

\(\overrightarrow{AM}=\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)

Mà: \(\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AM}=\dfrac{1}{3}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)

Câu 6:

\(\left|\overrightarrow{a}-\overrightarrow{b}\right|=3\)

\(a^2+b^2-2\overrightarrow{a}.\overrightarrow{b}=9\)

\(\overrightarrow{a}.\overrightarrow{b}=\dfrac{1^2+2^2-9}{2}=-2\)

Câu 7: 

\(\left|\overrightarrow{AB}-\overrightarrow{AD}+\overrightarrow{CD}\right|=\left|\overrightarrow{DB}+\overrightarrow{CD}\right|\)

                              \(=\left|\overrightarrow{DB}-\overrightarrow{DC}\right|=\left|\overrightarrow{CB}\right|=BC=a\)