K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2019

ta có:

\(2A=2+1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2017}}\)

\(\Rightarrow2A-A=2-\frac{1}{2^{2018}}\)

\(\Rightarrow A=\frac{2^{2019}-1}{2^{2018}}\)

4 tháng 3 2019

\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+.....+\frac{1}{2^{2018}}\)

\(\Rightarrow2A=2+1+\frac{1}{2}+\frac{1}{2^2}+.......+\frac{1}{2^{2017}}\)

\(\Rightarrow2A-A=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+........+\frac{1}{2^{2017}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+......+\frac{1}{2^{2018}}\right)\)

\(\Rightarrow A=2-\frac{1}{2^{2018}}\)

\(\Rightarrow A=\frac{2^{2019}-1}{2^{2018}}\)

8 tháng 8 2018

\(\left(1+\frac{1}{2}\right).\left(1+\frac{1}{3}\right).\left(1+\frac{1}{4}\right)....\left(1+\frac{1}{2018}\right)\)

\(=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}....\frac{2018}{2017}.\frac{2019}{2018}\)

\(=\frac{3.4.5.6.....2018.2019}{2.3.4.5....2017.2018}=\frac{2019}{2}\)

8 tháng 8 2018

\(\left(1+\frac{1}{2}\right).\left(1+\frac{1}{3}\right).\left(1+\frac{1}{4}\right)....\left(1+\frac{1}{2018}\right)\)

\(=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}....\frac{2019}{2018}\)

\(=\frac{3.4.5....2019}{2.3.4....2018}\)

\(=\frac{2019}{2}\)

1 tháng 8 2018

Đặt  \(ab=x;\)\(bc=y;\)\(ca=z\)

Khi đó:   \(a^3b^3+b^3c^3+c^3a^3=3a^2b^2c^2\)

<=>  \(x^3+y^3+z^3=3xyz\)

<=>  \(x^3+y^3+z^3-3xyz=0\)

<=>  \(\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)

Nếu:  \(x+y+z=0\)thì:  \(ab+bc+ca=0\)

\(A=\left(\frac{a}{b}+1\right)\left(\frac{b}{c}+1\right)+\left(\frac{c}{a}+1\right)\)

\(=\frac{\left(a+b\right)\left(b+c\right)}{bc}+\frac{c}{a}+1=\frac{ab+ac+bc+b^2}{bc}+\frac{c}{a}+1\)

\(=\frac{b}{c}+\frac{c}{a}+1=\frac{ab+c^2+ac}{ac}=\frac{c^2-bc}{ac}=\frac{c-b}{a}\)

Nếu:  \(x^2+y^2+z^2-xy-yz-zx=0\)<=>   \(x=y=z\)

<=>  \(ab=bc=ca\)<=>  \(a=b=c\)

\(A=\left(\frac{a}{b}+1\right)\left(\frac{b}{c}+1\right)+\left(\frac{c}{a}+1\right)=2.2+2=6\)

p/s: trg hợp 1 mk lm đc đến có z thôi, bn tham khảo

7 tháng 4 2018

Áp dụng công thức \(1+2+3+...+n=\frac{n\left(n+1\right)}{2}\) nhé bạn 

Ta có : 

\(A=\frac{2}{1+2}+\frac{2}{1+2+3}+\frac{2}{1+2+3+4}+...+\frac{2}{1+2+3+...+2018}\)

\(A=\frac{2}{\frac{2\left(2+1\right)}{2}}+\frac{2}{\frac{3\left(3+1\right)}{2}}+\frac{2}{\frac{4\left(4+1\right)}{2}}+...+\frac{2}{\frac{2018\left(2018+1\right)}{2}}\)

\(A=\frac{4}{2.3}+\frac{4}{3.4}+\frac{4}{4.5}+...+\frac{4}{2018.2019}\)

\(A=4\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2018.2019}\right)\)

\(A=4\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2018}-\frac{1}{2019}\right)\)

\(A=4\left(\frac{1}{2}-\frac{1}{2019}\right)\)

\(A=4.\frac{2017}{4038}\)

\(A=\frac{4034}{2019}\)

Vậy \(A=\frac{4034}{2019}\)

Chúc bạn học tốt ~