K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2019

a, Bảng giá trị tương ứng x và y

x-2-1012
y11/401/41

y x -2 -1 0 1 2 1/4 1

b, Viết lại cho đẹp \(3x-4y-24=0\Rightarrow\left(d\right)y=\frac{3}{4}x-6\)

Hoành độ giao điểm của (d) và (P) là nghiệm của phương trình

\(\frac{x^2}{4}=\frac{3}{4}x-6\)

\(\Leftrightarrow x^2=3x-24\)

\(\Leftrightarrow x^2-3x+24=0\)

\(\Leftrightarrow\left(x-\frac{3}{2}\right)^2+\frac{87}{4}=0\)

Pt vô nghiệm nên (d) không cắt (P)

c, Gọi tiếp tuyến của (P) đi qua điểm A(8;0) là (d') y = ax + b

Hoành độ giao điểm (d') và (P) là nghiệm của pt

\(\frac{x^2}{4}=ax+b\)

\(\Leftrightarrow x^2-4ax-4b=0\)

Để (d') tiếp xúc (P) thì \(\Delta'=0\)

                           \(\Leftrightarrow4a^2+4b=0\)

                           \(\Leftrightarrow a^2+b=0\)

Vì \(A\in\left(d'\right)\Rightarrow0=8a+b\)

Ta có hệ  \(\hept{\begin{cases}a^2+b=0\\8a+b=0\end{cases}}\)

\(\Rightarrow a^2-8a=0\)

\(\Rightarrow\orbr{\begin{cases}a=0\Rightarrow b=0\\a=8\Rightarrow b=-64\end{cases}}\)

*Với a = 0 ; b = 0 thì (d') y = 0 => (d') là trục Ox

*Với a = 8 ; b = -64 thì (d') y = 8x - 64

Vậy tiếp tuyến của (P) tại A(8;0) là trục Ox hoặc đường thằng y = 8x - 64

20 tháng 11 2023

1: Bạn bổ sung đề bài đi bạn

2: Tọa độ A là:

\(\left\{{}\begin{matrix}y=0\\\left(2m-1\right)x-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\\left(2m-1\right)x=4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{4}{2m-1}\\y=0\end{matrix}\right.\)

=>\(OA=\sqrt{\left(\dfrac{4}{2m-1}-0\right)^2+\left(0-0\right)^2}=\dfrac{4}{\left|2m-1\right|}\)

Tọa độ B là:

\(\left\{{}\begin{matrix}x=0\\y=\left(2m-1\right)x-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\left(2m-1\right)\cdot0-4=-4\end{matrix}\right.\)

=>OB=4

Để ΔOAB cân tại O thì OA=OB

=>\(\dfrac{4}{\left|2m-1\right|}=4\)

=>\(\dfrac{1}{\left|2m-1\right|}=1\)

=>\(\left|2m-1\right|=1\)

=>\(\left[{}\begin{matrix}2m-1=1\\2m-1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2m=2\\2m=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=1\\m=0\end{matrix}\right.\)

20 tháng 11 2023

Với m=1 nha bn mik thíu

 

27 tháng 4 2022

có:

+) đạo hàm của f(x) = f'(x) = 3x2 

+) phương trình tiếp tuyến là : y= f'(x).(x-x0) + f(x0

=> y = 3x2.(x-1) + 13 + 3 = 3x3 - 3x2 + 4 

 

 

27 tháng 4 2022

=-=-=--=-=-=--0-=-09876543w3er567890-=-0987654e3wq

8 tháng 4 2016

Ta có \(y'=3x^2-6x\)

Gọi \(M\left(x_0;x_0^3-3x^3_0+4\right)\) là điểm thuộc đồ thị (C)

Hệ số góc tiếp tuyến của đồ thị (C) tại M là \(k=y'\left(x_0\right)=3x_0^2-6x_0\)

Vì tiếp tuyến của đồ thị tại M song song với đường thẳng \(d:y=9x+3\) nên có hệ số góc \(k=9\)

\(\Leftrightarrow3x_0^2-6x_0=9\Leftrightarrow x_0^2-2x_0-3=0\Leftrightarrow x_0=-1\) V \(x_0=3\)

Vậy \(M\left(-1;0\right)\) và \(M\left(3;4\right)\) đều không thuộc d nên thỏa mãn yêu cầu bài toán

28 tháng 11 2023

a) 

  loading... b) Phương trình hoành độ giao điểm của (D₁) và (D₂):

x/2 + 2 = -x + 3

⇔ x/2 + x = 3 - 2

⇔ 3x/2 = 1

⇔ x = 1 : 3/2

⇔ x = 2/3

⇒ y = -2/3 + 3

⇔ y = 7/3

Vậy A(2/3; 7/3)

c) Do (D) // (D₂)

⇒ a = -1

⇒ (D): y = -x + b

Thay x = -2 vào (D₁) ta có:

y = 1/2 . (-2) + 2

⇔ y = 1

Thay x = -2; y = 1 vào (D) ta có:

2 + b = 1

⇔ b = 1 - 2

⇔ b = -1

Vậy (D): y = -x - 1

15 tháng 12 2023

Bài 3: 

a) 

loading... 

b) Xét phương trình hoành độ giao điểm của D1 và D2 có: y = y

  ⇒ \(\dfrac{1}{2}x+2=-x+3\)

  ⇒ \(\dfrac{3}{2}x=1\)

  ⇒ \(x=\dfrac{2}{3}\)

Thay \(x=\dfrac{2}{3}\) vào D2  \(y=-\dfrac{2}{3}+3=\dfrac{7}{3}\)

  ⇒ \(A\left(\dfrac{2}{3};\dfrac{7}{3}\right)\)

Vậy D1 cắt D2 tại \(A\left(\dfrac{2}{3};\dfrac{7}{3}\right)\)

c) ĐK: a ≠ 0

   Vì (D) // (D2)

  ⇒ \(\left\{{}\begin{matrix}a=-1\left(TM\right)\\b\ne3\end{matrix}\right.\)

   Vì (D) cắt (D1) tại điểm có hoành độ x = 2

   Tức là x = -2 và y = 1

   Thay x = 2; y = 0 và a = -1(TMĐK) vào D có:

  ⇒ \(-2\cdot-1+b=1\)

  ⇒ \(b+2=1\)

  ⇒ \(b=-1\left(TM\right)\)

Vậy (D) : y = \(-x-1\)

3 tháng 5 2016

Với m = 1, ta có \(\left(C_1\right):y=\frac{x+1}{x-1}\)

a. Gọi d là đường thẳng đi qua P, có hệ số góc k => \(d:y=k\left(x-3\right)+1\)

d là tiếp tuyến \(\Leftrightarrow\begin{cases}\frac{x+1}{x-1}=k\left(x-3\right)+1\\\frac{-2}{\left(x-1\right)^2}=k\end{cases}\) có nghiệm

Thế k vào phương trình thứ nhất, ta được :

\(\frac{x+1}{x-1}=\frac{-2}{\left(x-1\right)^2}\left(x-3\right)+1\Leftrightarrow x=2\)

\(\Rightarrow k=-2\Rightarrow\) phương trình tiếp tuyến : \(y=-2x+7\)

 

b. Gọi d là đường thẳng đi qua A, có hệ số góc k : \(d:y=k\left(x-2\right)-1\)

d là tiếp tuyến \(\Leftrightarrow\begin{cases}\frac{x+1}{x-1}=k\left(x-2\right)-1\\\frac{-2}{\left(x-1\right)^2}=k\end{cases}\) có nghiệm

Thế k vào phương trình thứ nhất, ta được :

\(\frac{x+1}{x-1}=\frac{-2}{\left(x-1\right)^2}\left(x-2\right)-1\Leftrightarrow x=\pm\sqrt{2}\)

\(x=\sqrt{2}\Rightarrow k=-2\left(3+2\sqrt{2}\right)\Rightarrow\) phương trình tiếp tuyến : \(y=-2\left(3+2\sqrt{2}\right)x+11+8\sqrt{2}\)

\(x=-\sqrt{2}\Rightarrow k=-2\left(3-2\sqrt{2}\right)\Rightarrow\) phương trình tiếp tuyến : \(y=-2\left(3-2\sqrt{2}\right)x+11-8\sqrt{2}\)

 c. Ta có : \(y'=\frac{m^2-2m-1}{\left(x+m-2\right)^2}\)Tiếp tuyến tại điểm có hoành độ x = 1 vuông góc với đường thẳng\(y=x+1\Leftrightarrow y'\left(1\right)=-1\Leftrightarrow\frac{m^2-2m-1}{\left(m-1\right)^2}=-1\)\(\Leftrightarrow m=0;m=2\) 

 

 

 

29 tháng 4 2016

a. Tiếp tuyến của \(\left(C_m\right)\) tại điểm có hoành độ x = 1 có phương trình :

\(y=\left(m-2\right)\left(x-1\right)+3m-2=\left(m-2\right)x+3m\)

Yêu cầu của bài toán khi và chỉ khi \(\begin{cases}m-2=3\\2m\ne10\end{cases}\) vô nghiệm

Vậy không tồn tại m thỏa mãn yêu cầu bài toán

b. Ta có \(y'=3\left(x^2-\frac{4}{3}x+\frac{4}{9}\right)+m-\frac{7}{3}=3\left(x-\frac{2}{3}\right)^2+m-\frac{7}{3}\)

Suy ra \(y'\ge m-\frac{7}{3}\)

Tiếp tuyến tại điểm có hoành độ \(x=\frac{2}{3}\) có hệ số góc nhỏ nhất và hệ số góc có giá trị \(k=m-\frac{7}{3}\)

Yêu cầu bài toán \(\Leftrightarrow k.2=-1\Leftrightarrow\left(m-\frac{7}{3}\right).2=-1\Leftrightarrow m=\frac{11}{6}\)

NV
2 tháng 4 2021

\(y'=8x^3-8x\)

a. Đường thẳng \(x-48y+1=0\) có hệ số góc \(\dfrac{1}{48}\) nên tiếp tuyến có hệ số góc \(k=-48\)

\(\Rightarrow8x^3-8x=-48\Rightarrow x^3-x+6=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2-2x+3\right)=0\Rightarrow x=-2\)

\(y'\left(-2\right)=47\)

Phương trình tiếp tuyến: \(y=-48\left(x+2\right)+47\)

b. Gọi tiếp điểm có hoành độ \(x_0\) 

Phương trình tiếp tuyến: \(y=\left(8x_0^3-8x_0\right)\left(x-x_0\right)+2x^4_0-4x^2_0-1\) (1)

Do tiếp tuyến qua A:

\(\Rightarrow-3=\left(8x_0^3-8x_0\right)\left(1-x_0\right)+2x_0^4-4x^2_0-1\)

\(\Leftrightarrow3x_0^4-4x_0^3-2x_0^2+4x_0-1=0\)

\(\Leftrightarrow\left(x_0-1\right)^2\left(3x_0^2+2x_0-1\right)=0\Rightarrow\left[{}\begin{matrix}x_0=1\\x_0=-1\\x_0=\dfrac{1}{3}\end{matrix}\right.\)

Có 3 tiếp tuyến thỏa mãn. Thay lần lượt các giá trị \(x_0\) bên trên vào (1) là được