Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Bạn bổ sung đề bài đi bạn
2: Tọa độ A là:
\(\left\{{}\begin{matrix}y=0\\\left(2m-1\right)x-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\\left(2m-1\right)x=4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{4}{2m-1}\\y=0\end{matrix}\right.\)
=>\(OA=\sqrt{\left(\dfrac{4}{2m-1}-0\right)^2+\left(0-0\right)^2}=\dfrac{4}{\left|2m-1\right|}\)
Tọa độ B là:
\(\left\{{}\begin{matrix}x=0\\y=\left(2m-1\right)x-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\left(2m-1\right)\cdot0-4=-4\end{matrix}\right.\)
=>OB=4
Để ΔOAB cân tại O thì OA=OB
=>\(\dfrac{4}{\left|2m-1\right|}=4\)
=>\(\dfrac{1}{\left|2m-1\right|}=1\)
=>\(\left|2m-1\right|=1\)
=>\(\left[{}\begin{matrix}2m-1=1\\2m-1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2m=2\\2m=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=1\\m=0\end{matrix}\right.\)
a)
b) Phương trình hoành độ giao điểm của (D₁) và (D₂):
x/2 + 2 = -x + 3
⇔ x/2 + x = 3 - 2
⇔ 3x/2 = 1
⇔ x = 1 : 3/2
⇔ x = 2/3
⇒ y = -2/3 + 3
⇔ y = 7/3
Vậy A(2/3; 7/3)
c) Do (D) // (D₂)
⇒ a = -1
⇒ (D): y = -x + b
Thay x = -2 vào (D₁) ta có:
y = 1/2 . (-2) + 2
⇔ y = 1
Thay x = -2; y = 1 vào (D) ta có:
2 + b = 1
⇔ b = 1 - 2
⇔ b = -1
Vậy (D): y = -x - 1
Bài 3:
a)
b) Xét phương trình hoành độ giao điểm của D1 và D2 có: y = y
⇒ \(\dfrac{1}{2}x+2=-x+3\)
⇒ \(\dfrac{3}{2}x=1\)
⇒ \(x=\dfrac{2}{3}\)
Thay \(x=\dfrac{2}{3}\) vào D2 có \(y=-\dfrac{2}{3}+3=\dfrac{7}{3}\)
⇒ \(A\left(\dfrac{2}{3};\dfrac{7}{3}\right)\)
Vậy D1 cắt D2 tại \(A\left(\dfrac{2}{3};\dfrac{7}{3}\right)\)
c) ĐK: a ≠ 0
Vì (D) // (D2)
⇒ \(\left\{{}\begin{matrix}a=-1\left(TM\right)\\b\ne3\end{matrix}\right.\)
Vì (D) cắt (D1) tại điểm có hoành độ x = 2
Tức là x = -2 và y = 1
Thay x = 2; y = 0 và a = -1(TMĐK) vào D có:
⇒ \(-2\cdot-1+b=1\)
⇒ \(b+2=1\)
⇒ \(b=-1\left(TM\right)\)
Vậy (D) : y = \(-x-1\)
a:
b: Tọa độ giao điểm của (d1) và (d2) là:
\(\left\{{}\begin{matrix}3x-2=x+1\\y=x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-x=2+1\\y=x+1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x=3\\y=x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=\dfrac{3}{2}+1=\dfrac{5}{2}\end{matrix}\right.\)
Thay x=3/2 và y=5/2 vào (d3), ta được:
\(2m+3\cdot\dfrac{3}{2}-1=\dfrac{5}{2}\)
=>\(2m+\dfrac{7}{2}=\dfrac{5}{2}\)
=>\(2m=-1\)
=>m=-1/2
c: (d3): y=2m+3x-1
=>y=m*2+3x-1
Tọa độ điểm mà (d3) luôn đi qua là:
\(\left\{{}\begin{matrix}2=0\left(vôlý\right)\\y=3x-1\end{matrix}\right.\)
=>(d3) không đi qua cố định bất cứ điểm nào
1. Cái này chắc bạn tự vẽ được nhỉ?
2.
a, -Gọi pt đường thẳng cần tìm là (d): y=ax+b (a\(\ne\)0)
- Vì A (\(\dfrac{-2}{3}\); -7) và B(2; 1) \(\in\) (d)
=> hệ pt: (1): -7= \(\dfrac{-2}{3}\)a+b
(2): 1= 2a+b
(bạn tự giải hệ nhé) => a= 3 (tmđk); b=-5
=> pt đường thẳng cần tìm: y=3x-5
b, - Xét pt hoành độ giao điểm của (P) và (d):
=> -2x\(^2\)=3x-5
=> x=1 hoặc x=-\(\dfrac{5}{2}\)
- Với C, D là hai giao điểm của (P) và (d):
+ Khi x=1 => y=-2 => C (1; -2)
+ Khi x=-\(\dfrac{5}{2}\) => y= -\(\dfrac{25}{2}\) => D (-\(\dfrac{5}{2}\); -\(\dfrac{25}{2}\))
3. - Để tổng hoành độ và tung độ của điểm cần tìm bằng 6
=> x+y=6
mà điểm đó thuộc (P) nên thay y= -2x\(^2\) vào pt, ta được:
x-2x\(^2\)=6 <=> -2x\(^2\)+x-6=0
=> vô nghiệm
=> không có điểm nào nằm trên (P) có tổng hoành độ và tung độ bằng 6
a: Thay x=1 vào \(y=-\dfrac{5}{2}x\), ta được:
\(y=-\dfrac{5}{2}\cdot1=-\dfrac{5}{2}\)
Vậy: \(A\left(1;-\dfrac{5}{2}\right)\) thuộc đồ thị hàm số y=-5/2x
b: Thay x=2 vào \(y=-\dfrac{5}{2}x\), ta được:
\(y=-\dfrac{5}{2}\cdot2=-5\)
=>B(2;-5) thuộc đồ thị hàm số y=-5/2x
Thay x=3 vào y=-5/2x, ta được:
\(y=-\dfrac{5}{2}\cdot3=-\dfrac{15}{2}\)<>7
=>\(C\left(3;7\right)\) không thuộc đồ thị hàm số y=-5/2x
Thay x=1 vào y=-5/2x, ta được:
\(y=-\dfrac{5}{2}\cdot1=-\dfrac{5}{2}\)<>5/2
=>\(D\left(1;\dfrac{5}{2}\right)\) không thuộc đồ thị hàm số \(y=-\dfrac{5}{2}x\)
Thay x=0 vào \(y=-\dfrac{5}{2}x\), ta được:
\(y=-\dfrac{5}{2}\cdot0=0\)<>4
=>E(0;4) không thuộc đồ thị hàm số \(y=-\dfrac{5}{2}x\)
a, Bảng giá trị tương ứng x và y
b, Viết lại cho đẹp \(3x-4y-24=0\Rightarrow\left(d\right)y=\frac{3}{4}x-6\)
Hoành độ giao điểm của (d) và (P) là nghiệm của phương trình
\(\frac{x^2}{4}=\frac{3}{4}x-6\)
\(\Leftrightarrow x^2=3x-24\)
\(\Leftrightarrow x^2-3x+24=0\)
\(\Leftrightarrow\left(x-\frac{3}{2}\right)^2+\frac{87}{4}=0\)
Pt vô nghiệm nên (d) không cắt (P)
c, Gọi tiếp tuyến của (P) đi qua điểm A(8;0) là (d') y = ax + b
Hoành độ giao điểm (d') và (P) là nghiệm của pt
\(\frac{x^2}{4}=ax+b\)
\(\Leftrightarrow x^2-4ax-4b=0\)
Để (d') tiếp xúc (P) thì \(\Delta'=0\)
\(\Leftrightarrow4a^2+4b=0\)
\(\Leftrightarrow a^2+b=0\)
Vì \(A\in\left(d'\right)\Rightarrow0=8a+b\)
Ta có hệ \(\hept{\begin{cases}a^2+b=0\\8a+b=0\end{cases}}\)
\(\Rightarrow a^2-8a=0\)
\(\Rightarrow\orbr{\begin{cases}a=0\Rightarrow b=0\\a=8\Rightarrow b=-64\end{cases}}\)
*Với a = 0 ; b = 0 thì (d') y = 0 => (d') là trục Ox
*Với a = 8 ; b = -64 thì (d') y = 8x - 64
Vậy tiếp tuyến của (P) tại A(8;0) là trục Ox hoặc đường thằng y = 8x - 64