Chứng tỏ rằng:
1/10.1/11+1/11.1/12+...+1/20.1/21>1/20
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có
A = \(\dfrac{1}{10}\) + \((\dfrac{1}{11}\) + \(\dfrac{1}{12}\) + ...+ \(\dfrac{1}{100}\)\()\)
⇒ A > \(\dfrac{1}{10}\) + \((\dfrac{1}{100}\) + \(\dfrac{1}{100}\) + ...+ \(\dfrac{1}{100}\)\()\)90 số hạng
⇒ A > \(\dfrac{1}{10}\) + \(\dfrac{90}{100}\)
⇒ A > 1
vậy A > 1
b: ta có
S = (\(\dfrac{1}{21}\) + \(\dfrac{1}{22}\)+ \(\dfrac{1}{23}\) + \(\dfrac{1}{24}\) + \(\dfrac{1}{25}\))+(\(\dfrac{1}{26}\) + \(\dfrac{1}{27}\)+ \(\dfrac{1}{28}\) + \(\dfrac{1}{29}\) + \(\dfrac{1}{30}\))+(\(\dfrac{1}{31}\) + \(\dfrac{1}{32}\)+ \(\dfrac{1}{33}\) + \(\dfrac{1}{34}\) + \(\dfrac{1}{35}\))
⇒ S > (\(\dfrac{1}{25}\) + \(\dfrac{1}{25}\)+ \(\dfrac{1}{25}\) + \(\dfrac{1}{25}\) + \(\dfrac{1}{25}\))+(\(\dfrac{1}{30}\) + \(\dfrac{1}{30}\)+ \(\dfrac{1}{30}\) + \(\dfrac{1}{30}\) + \(\dfrac{1}{30}\))+(\(\dfrac{1}{35}\) + \(\dfrac{1}{35}\)+ \(\dfrac{1}{35}\) + \(\dfrac{1}{35}\) + \(\dfrac{1}{35}\))
⇔ S > \(\dfrac{5}{25}\)+\(\dfrac{5}{30}\)+\(\dfrac{5}{35}\)
⇔ S > \(\dfrac{1}{5}\)+\(\dfrac{1}{6}\)+\(\dfrac{1}{7}\)
⇔ S > \(\dfrac{107}{210}\)> \(\dfrac{105}{210}\)=\(\dfrac{1}{2}\)
vậy S > \(\dfrac{1}{2}\)
1/10+1/11+…+1/19 > 1/20+1/20+…+1/20 = 10/20 = 1/2
1/20+1/21+…+1/29 > 1/30+1/30+…+1/30 = 10/30 = 1/3
1/30+1/31+…+1/39 > 1/40+1/40+…+1/40 = 10/40 = 1/4
=> A>1
Ta có 1+5/28=33/28
Đặt A=1/11+1/12+1/13+...+1/69+1/70
A=(1/11+1/12++1/13+...+1/20)+(1/21+1/22+1/23+...+1/30)+(1/31+1/32+1/33+...1/60)+...+1/70
Ta thấy :
1/11+1/12+1/13+...+1/20>1/20+1/20+1/20+...+1/20(có 10 số hạng 1/20)=1/20*10=1/2
1/21+1/22+1/23+...+1/30>1/30+1/30+1/30+...+1/30(10 số hạng 1/30)=1/30*10=1/3
1/30+1/31+1/32+...+1/60>1/60+1/60+...+1/60(30 số hạng 1/60)=1/60*30=1/2
1/61+1/62+1/63+...+1/70>1/70+1/70+1/70+...+1/70(10 số hạng 1/70)=1/70*10=1/7
=>1/11+1/12+1/13+...+1/69+1/70>1/2+1/3+1/2+1/7
=>A>31/21
Mà 31/21>33/28
=>A>33/28
=>A>1+5/28(DPCM)
Vậy A>1+5/28
lớp 6 đó các bạn