K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2022

a) (x2 - 4x)2 = 4(x2 - 4x) 

<=> (x2 - 4x)(x2 - 4x - 4) = 0

<=> x(x - 4)(x2 - 4x - 4) = 0

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\\left(x-2\right)^2=8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=\pm\sqrt{8}+2\end{matrix}\right.\)

b) (x + 2)2 - x + 1 = (x - 1)(x + 1) 

<=> x2 + 4x + 4 - x + 1 = x2 - 1

<=> 3x + 5 = -1

<=> x = -2 

31 tháng 1 2023

\(\left(x-2\right)\left(x-1\right)\left(x-4\right)\left(x-8\right)=4x^2\)

\(\Leftrightarrow[\left(x-2\right)\left(x-4\right)][\left(x-1\right)\left(x-8\right)]=4x^2\)

\(\Leftrightarrow\left(x^2-6x+8\right)\left(x^2-9x+8\right)=4x^2\)

thấy \(x=0;2\) không phải nghiệm của phương trình nên ta chia hai vế của pt cho \(x^2\) ta được \(:\)

\(\Leftrightarrow\left(x+\dfrac{8}{x}-9\right)\left(x+\dfrac{8}{x}-6\right)=4\)

\(Đặt:\) \(x+\dfrac{8}{x}=a\) thì pt trở thành \(:\)

\(\left(a-6\right)\left(a-9\right)=4\)

\(\Leftrightarrow a^2-15a+50=0\)

\(\Leftrightarrow\left(a-5\right)\left(a-10\right)=0\Leftrightarrow\left\{{}\begin{matrix}a=5\\a=10\end{matrix}\right.\)

\(Với\) \(a=5\) thì \(x+\dfrac{8}{x}=5\Leftrightarrow x^2-5x+8=0\left(vônghiem\right)\)

\(Với\) \(a=10\) thì \(x+\dfrac{8}{x}=10\Leftrightarrow x^2-10x+8=0\Leftrightarrow\left\{{}\begin{matrix}x=5-căn17\\x=5+căn17\end{matrix}\right.\)

\(Vậy...\)

31 tháng 1 2023

căn bậc 2 của \(17\) đấy á

5 tháng 4 2019

Ta có

\(\left(x^2-4x\right)^2+2\left(x-2\right)^2=43\)

\(\Leftrightarrow\left(x^2-4x\right)^2+2\left(x^2-4x+4\right)=43\)

Đặt

\(x^2-4x=t\) , ta có phương trình tương đương

\(t^2+2\left(t+4\right)=43\)

\(\Leftrightarrow t^2+2t-35=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=-7\\t=5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-4x=-7\\x^2-4x=5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-4x+7=0\\x^2-4x-5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-2\right)^2+3=0\\\left(x+1\right)\left(x-5\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\varnothing\\\left[{}\begin{matrix}x=-1\\x=5\end{matrix}\right.\end{matrix}\right.\)

Vậy \(x\in\left\{-1;5\right\}\)

7 tháng 4 2019

\(\left(x^2-4x\right)^2+2\left(x-2\right)^2=43\)

\(\Leftrightarrow\left(x^2-4x\right)^2+2\left(x^2-4x+4\right)=43\)

Đặt \(t=x^2-4x\) ta được:

\(t^2+2\left(t+4\right)=43\)

\(\Leftrightarrow t^2+2t+8=43\Leftrightarrow t^2+2t-35=0\)

\(\Leftrightarrow\left(t-5\right)\left(t+7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t-5=0\\\\t+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=5\\\\t=-7\end{matrix}\right.\)

Xét t = 5:

\(x^2-4x=5\Leftrightarrow x^2-4x-5=0\Leftrightarrow\left(x+1\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\\\x=5\end{matrix}\right.\)

Xét t = -7:

\(x^2-4x=-7\Leftrightarrow x^2-4x+7=0\Leftrightarrow\left(x-2\right)^2+3=0\left(vl\right)\)

Vậy, \(S=\left\{-1;5\right\}\)

a) Ta có: \(\left(x^2-2x\right)^2-2\left(x^2-2x\right)-3=0\)

\(\Leftrightarrow\left(x^2-2x\right)^2+\left(x^2-2x\right)-3\left(x^2-2x\right)-3=0\)

\(\Leftrightarrow\left(x^2-2x\right)\left(x^2-2x+1\right)-3\left(x^2-2x+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2\cdot\left(x^2-2x-3\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2\cdot\left(x+1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=3\end{matrix}\right.\)

Vậy: S={1;-1;3}

28 tháng 3 2021

bạn có thể làm theo cách lớp 9 được ko???

 

NV
10 tháng 5 2021

Đề bài là \(\left(x^2+4x+1\right)^2+4\left(x^2+4x+1\right)=x-1\) có đúng không nhỉ?

Vì đề bài thế này thì vế trái người ta sẽ cộng luôn thành \(5\left(x^2+4x+1\right)\)

10 tháng 5 2021

đề bài chắc đúng á thầy em tính ra

x1=-(19-\(\sqrt{ }\)241)/10

x2=-(19+\(\sqrt{ }\)241)/10

 

NV
8 tháng 4 2021

\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x^2-2x\right)-\left(y^2-4y\right)=1\\\left(x^2-2x\right)^2+2=y\left(x-2\right)x\left(y-4\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x^2-2x\right)-\left(y^2-4y\right)=1\\\left(x^2-2x\right)^2+2=\left(x^2-2x\right)\left(y^2-4y\right)\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x^2-2x=u\\y^2-4y=v\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2u-v=1\\u^2+2=uv\end{matrix}\right.\) \(\Rightarrow u^2+2=u\left(2u-1\right)\)

\(\Leftrightarrow u^2-u-2=0\Leftrightarrow...\)