K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2019

x y khác 0 nha

Sorry

21 tháng 2 2019

Ta có: x - y.2 = y - x.2

=> x + 2x = y + y.3

=> 3x = 3y

=> x = y

Vậy x,y \(\in\)tất cả các số nguyên thì x - y.2 = y - x.2

26 tháng 6 2020

\(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}=\frac{6^2}{3}=12\)

Dấu "=" xảy ra <=> x = y = z = 2

GTNN của x^2 + y^2 + z^2 là 12 tại x = y = z = 2

23 tháng 3 2016

CM được chỉ có tổng bình phương của 2 số chia hết 11 là chia hết cho 121

từ 1 đến 500 có 4 số chia hết 121

=> có C2 của 45 + 45= 1035 cách chọn. 

Hnay thi t ngu tính thành 45^2 :((

24 tháng 3 2016

sai bạn ạ

12 tháng 1 2018

             \(x^2+2x+6\)\(⋮\)\(x+4\)

\(\Leftrightarrow\)\(\left(x-2\right)\left(x+4\right)+14\)\(⋮\)\(x+4\)

Ta thấy    \(\left(x-2\right)\left(x+4\right)\)\(⋮\)\(x+4\)

nên    \(14\)\(⋮\)\(x+4\)

hay    \(x+4\)\(\inƯ\left(14\right)=\left\{\pm1;\pm2;\pm7\right\}\)

Ta lập bảng sau:

\(x+4\)        \(-7\)             \(-2\)            \(-1\)              \(1\)               \(2\)                \(7\)

\(x\)               \(-11\)            \(-9\)             \(-5\)          \(-3\)          \(-2\)                \(3\)

Vậy....

11 tháng 8 2018

Dễ có: \(x^2+y^2\ge2xy\Leftrightarrow\left(x-y\right)^2\ge0\)

\(\frac{1}{x^2-xy+y^2}=\frac{xyz}{x^2-xy+y^2}\le\frac{xyz}{2xy-xy}=z\)

Tương tự cho 2 BĐT còn lại ta có: 

\(VT\le x+y+z=VP\)

Dấu "=" khi x=y=z=1

14 tháng 3 2020

a) x+15 là bội của x+3

\(\Rightarrow\)x+15\(⋮\)x+3

\(\Rightarrow\)x+3+12\(⋮\)x+3

x+3\(⋮\)x+3

\(\Rightarrow\)12\(⋮\)x+3

\(\Rightarrow x+3\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm12\right\}\)

\(\Rightarrow x\in\left\{-4;-2;-5;-1;-6;0;-7;1;-15;9\right\}\)

Vậy x\(\in\){-4;-2;-5;-1;-6;0;-7;1;-15;9}

b) (x+1).(y-2)=3

\(\Rightarrow\)x+1 và y-2 thuộc Ư(3)={1;-1;3;-3}

Có :

x+11-13-3
x0-22-4
y+23-31-1
y1-5-1-3

Vậy (x;y)\(\in\){(0;1);(-2;-5);(2;-1);(-4;-3)}

Câu c tương tự câu b

14 tháng 3 2020

g) Ta có : (x,y)=5

\(\Rightarrow\hept{\begin{cases}x⋮5\\y⋮5\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=5m\\y=5n\\\left(m,n\right)=1\end{cases}}\)

Mà x+y=12

\(\Rightarrow\)5m+5n=12

\(\Rightarrow\)5(m+n)=12

\(\Rightarrow\)m+n=\(\frac{12}{5}\)

Bạn có thể xem lại đề được không ạ? Vì đến đây 12 không chia hết cho 5 nhé! Phần h bạn nên viết lại đề vì ƯCLN=[x,y]=8 tớ không hiểu lắm...

26 tháng 12 2016

ta thấy 2 >0

nên (x+1)^2 + (y+1)^2 +(x-y)^2 = x+1 + y+1 + x -y = 2

=> 2x =2 

=> x = 1

tự tìm y nhé bn

a) Ta có: (x-3)(y+2)=5

nên (x-3) và (y+2) là ước của 5

\(\Leftrightarrow x-3;y+2\in\left\{1;-5;-1;5\right\}\)

Trường hợp 1: 

\(\left\{{}\begin{matrix}x-3=1\\y+2=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=3\end{matrix}\right.\)

Trường hợp 2: 

\(\left\{{}\begin{matrix}x-3=5\\y+2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=-1\end{matrix}\right.\)

Trường hợp 3: 

\(\left\{{}\begin{matrix}x-3=-1\\y+2=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-7\end{matrix}\right.\)

Trường hợp 4: 

\(\left\{{}\begin{matrix}x-3=-5\\y+2=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-3\end{matrix}\right.\)

Vậy: \(\left(x,y\right)\in\left\{\left(4;3\right);\left(8;-1\right);\left(2;-7\right);\left(-2;-3\right)\right\}\)

b) Ta có: (x-2)(y+1)=5

nên x-2 và y+1 là các ước của 5

\(\Leftrightarrow x-2;y+1\in\left\{1;-1;5;-5\right\}\)

Trường hợp 1: 

\(\left\{{}\begin{matrix}x-2=1\\y+1=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)

Trường hợp 2: 

\(\left\{{}\begin{matrix}x-2=5\\y+1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=0\end{matrix}\right.\)

Trường hợp 3: 

\(\left\{{}\begin{matrix}x-2=-1\\y+1=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-6\end{matrix}\right.\)

Trường hợp 4: 

\(\left\{{}\begin{matrix}x-2=-5\\y+1=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-2\end{matrix}\right.\)

Vậy: \(\left(x,y\right)\in\left\{\left(3;4\right);\left(7;0\right);\left(1;-6\right);\left(-3;-2\right)\right\}\)