K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2019

                   Giải

\(\left(n^2-1\right)\left(n^2-5\right)< 0\)

\(\Rightarrow\) \(\hept{\begin{cases}n^2-1\\n^2-5\end{cases}}\) trái dấu

Mà \(n^2-1>n^2-5\) nên \(\hept{\begin{cases}n^2-1>0\\n^2-5< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}n^2>1\\n^2< 5\end{cases}}\)

\(\Leftrightarrow1< n^2< 5\)

Số chính phương lớn hơn 1 nhưng bé hơn 5 chỉ có thể là 4.

\(\Rightarrow n^2=4\)

\(\Leftrightarrow n^2=2^2\)

\(\Leftrightarrow n=2\)

21 tháng 2 2019

Ta có: \(n^2\ge0\Rightarrow n^2-1\ge n^2-5\)

Khi đó: \(\left(n^2-1\right)\left(n^2-5\right)< 0\Leftrightarrow\hept{\begin{cases}n^2-1< 0\\n^2-5>0\end{cases}}\)

Em kiểm tra lại đề lớp 6 chưa học phần này em nhé.

\(\Leftrightarrow\hept{\begin{cases}-1< n< 1\\\orbr{\begin{cases}n>\sqrt{5}\\n< -\sqrt{5}\end{cases}}\end{cases}\Leftrightarrow}\)

28 tháng 7 2023

Bài 1:
Ta có dãy số 2, 4, 6, ..., 2n là một dãy số chẵn liên tiếp.
Ta có công thức tổng của dãy số chẵn liên tiếp là: S = (a1 + an) * n / 2
Với a1 là số đầu tiên của dãy, an là số cuối cùng của dãy, n là số phần tử của dãy.
Áp dụng công thức trên vào bài toán, ta có:
(2 + 2n) * n / 2 = 756
(2n + 2) * n = 1512
2n^2 + 2n = 1512
2n^2 + 2n - 1512 = 0
Giải phương trình trên, ta được n = 18 hoặc n = -19.
Vì n là số tự nhiên nên n = 18.
Vậy số tự nhiên n cần tìm là 18.

Bài 2:
Ta có p = (n - 2)(n^2 + n - 5)
Để p là số nguyên tố, ta có hai trường hợp:
1. n - 2 = 1 và n^2 + n - 5 = p
2. n - 2 = p và n^2 + n - 5 = 1
Xét trường hợp 1:
n - 2 = 1
=> n = 3
Thay n = 3 vào phương trình n^2 + n - 5 = p, ta có:
3^2 + 3 - 5 = p
9 + 3 - 5 = p
7 = p
Vậy n = 3 và p = 7 là một cặp số nguyên tố thỏa mãn.

Xét trường hợp 2:
n - 2 = p
=> n = p + 2
Thay n = p + 2 vào phương trình n^2 + n - 5 = 1, ta có:
(p + 2)^2 + (p + 2) - 5 = 1
p^2 + 4p + 4 + p + 2 - 5 = 1
p^2 + 5p + 1 = 1
p^2 + 5p = 0
p(p + 5) = 0
p = 0 hoặc p = -5
Vì p là số nguyên tố nên p không thể bằng 0 hoặc âm.
Vậy không có số tự nhiên n thỏa mãn trong trường hợp này.

Vậy số tự nhiên n cần tìm là 3.

28 tháng 7 2023

Bài 1

...=((2n-2):2+1):2=756

(2(n-1):2+1)=756×2

n-1+1=1512

n=1512

AH
Akai Haruma
Giáo viên
13 tháng 12 2023

Lời giải:

Để $p=(n-2)(n^2+n-5)$ là số nguyên tố thì bản thân 1 trong 2 thừa số $n-2, n^2+n-5$ là số nguyên tố và số còn lại bằng 1.

TH1: $n-2=1\Rightarrow n=3$. Khi đó: $p=7$ là số nguyên tố (thỏa mãn) 

TH2: $n^2+n-5=1\Rightarrow n^2+n-6=0\Rightarrow (n-2)(n+3)=0$

$\Rightarrow n=2$ 

$\Rightarrow p=0$ không là snt (loại) 

Vậy $n=3$

19 tháng 12 2021

a: \(\Leftrightarrow2n-1\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{1;0;2\right\}\)

20 tháng 12 2021

a: \(\Leftrightarrow2n-1\in\left\{-1;1;3\right\}\)

hay \(n\in\left\{0;1;2\right\}\)

20 tháng 12 2021

câu b nữa bạn

a, 

Ta có: 4n-5 chia hết cho 2n-1

=>4n-2-3 chia hết cho 2n-1

=>2.(2n-1)-3 chia hết cho 2n-1

=>3 chia hết cho 2n-1

=>2n-1=Ư(3)=(-1,-3,1,3)

=>2n=(0,-2,2,4)

=>n=(0,-1,1,2)

Vậy n=0,-1,1,2

14 tháng 11 2023

giúp mik với

 

14 tháng 11 2023

nnhé

 

11:

n^3-n^2+2n+7 chia hết cho n^2+1

=>n^3+n-n^2-1+n+8 chia hết cho n^2+1

=>n+8 chia hết cho n^2+1

=>(n+8)(n-8) chia hết cho n^2+1

=>n^2-64 chia hết cho n^2+1

=>n^2+1-65 chia hết cho n^2+1

=>n^2+1 thuộc Ư(65)

=>n^2+1 thuộc {1;5;13;65}

=>n^2 thuộc {0;4;12;64}

mà n là số tự nhiên

nên n thuộc {0;2;8}

Thử lại, ta sẽ thấy n=8 không thỏa mãn

=>\(n\in\left\{0;2\right\}\)

4 tháng 9 2023

cảm on ha