K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

, Ta có :
AB^2 + AC^2 = 20^2 + 48^2
= 400 + 2304 = 2704 = 52^2
= BC^2
Từ đó => AB^2 + AC^2 = BC^2
Theo định lý PY ta go => tam giác ABC vuông tại A

17 tháng 2 2019

MIK CẦN LÀM CÂU B NHA M.N

13 tháng 2 2019

\(\Delta ABC\)vuông tại A

Áp dụng định lí py-ta-go ta có:

\(AB^2+AC^2=BC^2\)

\(\Rightarrow BC^2=20^2+15^2=625\)

\(\Rightarrow BC=\sqrt{625}=25\left(cm\right)\)

\(\Delta AHB\)vuông tại H

\(\Rightarrow HA^2+HB^2=AB^2\)

\(\Rightarrow HB^2=AB^2-HA^2=20^2-12^2=256\)

\(\Rightarrow HB=\sqrt{256}=16\left(cm\right)\)

\(\Delta AHC\)vuông tại H

\(\Rightarrow AH^2+CH^2=AC^2\)

\(\Rightarrow CH^2=AC^2-AH^2=15^2-12^2=81\)

\(\Rightarrow CH=\sqrt{81}=9\left(cm\right)\)

13 tháng 2 2019


A B C H

-Tam giác ABC vuông tại A

Áp dụng định lí Pytago

Ta có: \(AB^2+AC^2=BC^2\)

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{20^2+15^2}=\sqrt{625}=25\) (cm)

-Tam giác ABH vuông tại H

Theo Pytago có: \(BH^2+AH^2=AB^2\Rightarrow BH=\sqrt{AB^2-AH^2}=\sqrt{20^2-12^2}=\sqrt{256}=16\) (cm)

- Tam giác AHC vuông tại H

Theo pytago: \(AH^2+CH^2=AC^2\Rightarrow HC=\sqrt{AC^2-AH^2}=\sqrt{15^2-12^2}=\sqrt{81}=9\) (cm)

1 tháng 5 2018

câu b ntn v ạ

13 tháng 1 2018

a) Fix: \(\left\{{}\begin{matrix}BC=52cm\\AB=2cm\\AC=48cm\end{matrix}\right.\) Có thể dễ dàng thấy sai đề từ \(AB+AC< BC\)\(\Delta ABC\) không vuông như điều cần chứng minh

Ta có hình vẽ: B C A H

a) \(AB^2+AC^2=20^2+48^2=2704=52^2=BC^2\)

Vậy \(\Delta ABC\) vuông tại \(A\)

b) Áp dụng tính chất: Trong tam giác vuông bình tích 2 cạnh góc vuông bằng cạnh huyền nhân với đường cao

Có thể dễ dàng tìm được AH và S_ABC

22 tháng 10 2023

a) Để tính AC, ta sử dụng định lý Pythagoras trong tam giác vuông: AC^2 = AB^2 + BC^2. Với AB = 12cm và BC = 20cm, ta có: AC^2 = 12^2 + 20^2 = 144 + 400 = 544. Do đó, AC = √544 ≈ 23.32cm.

Để tính góc B, ta sử dụng công thức sin(B) = BC/AC. Với BC = 20cm và AC = 23.32cm, ta có: sin(B) = 20/23.32 ≈ 0.857. Từ đó, góc B ≈ arcsin(0.857) ≈ 58.62°.

Để tính AH, ta sử dụng công thức cos(B) = AH/AC. Với góc B ≈ 58.62° và AC = 23.32cm, ta có: cos(B) = AH/23.32. Từ đó, AH = 23.32 * cos(58.62°) ≈ 11.39cm.

b) Ta cần chứng minh AE.AC = AB^2 - HB^2. Vì ΔABC vuông tại A, ta có: AE = AB * sin(B) (theo định lý sin trong tam giác vuông) AC = AB * cos(B) (theo định lý cos trong tam giác vuông) HB = AB * sin(B) (theo định lý sin trong tam giác vuông)

Thay các giá trị vào biểu thức cần chứng minh: AE.AC = (AB * sin(B)) * (AB * cos(B)) = AB^2 * sin(B) * cos(B) = AB^2 * (sin(B) * cos(B)) = AB^2 * (sin^2(B) / sin(B)) = AB^2 * (1 - sin^2(B)) = AB^2 * (1 - (sin(B))^2) = AB^2 * (1 - (HB/AB)^2) = AB^2 - HB^2

Vậy, ta đã chứng minh AE.AC = AB^2 - HB^2.

c) Ta cần chứng minh AF = AE * tan(B). Vì ΔABC vuông tại A, ta có: AE = AB * sin(B) (theo định lý sin trong tam giác vuông) AF = AB * cos(B) (theo định lý cos trong tam giác vuông)

Thay các giá trị vào biểu thức cần chứng minh: AF = AB * cos(B) = AB * (cos(B) / sin(B)) * sin(B) = (AB * cos(B) / sin(B)) * sin(B) = AE * sin(B) = AE * tan(B)

Vậy, ta đã chứng minh AF = AE * tan(B).

d) Ta cần chứng minh tỉ lệ giữa các đường cao trong tam giác vuông ΔABC. CE/BF = AC/AB

Vì ΔABC vuông tại A, ta có: CE = AC * cos(B) (theo định lý cos trong tam giác vuông) BF = AB * cos(B) (theo định lý cos trong tam giác vuông)

Thay các giá trị vào biểu thức cần chứng minh: CE/BF = (AC * cos(B)) / (AB * cos(B)) = AC/AB

Vậy, ta đã chứng minh CE/BF = AC/AB.

15 tháng 5 2020
https://i.imgur.com/V7oZWx8.jpg

a: \(\text{Δ}ABC\sim\text{Δ}HBA;\text{Δ}ABC\sim\text{Δ}HCA\)

b: \(BC=\sqrt{AB^2+AC^2}=25\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{15\cdot20}{25}=12\left(cm\right)\)

\(BH=\dfrac{AB^2}{BC}=\dfrac{15^2}{25}=9\left(cm\right)\)

CH=BC-BH=25-9=16(cm)