cho tam giác ABC vuông cân tại B.M,N,P theo thứ tự là trung điểm các cạnh AB,AC,BC.biết rằng MNPB là hình vuông có diện tích là 441cm^2.tính cạnh huyền AC
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
25 tháng 1 2016
Giải : (Mình nêu sơ ý thôi, còn trình bày thì mình không rõ nhé )
SMNPB = 44 (cm2)
hay : a2 = 44
=> a = \(\sqrt{44}\)
a = \(2\sqrt{11}\)
=> MB = MN = NP = BP = \(2\sqrt{11}\)
Có MB = AB/2 (vì M là trung điểm của AB)
=> 2 . \(2\sqrt{11}\) = AB
AB =\(4\sqrt{11}\)
Tính BC bạn cũng làm tương tự như cách trên.
Vì ABC là tam giác vuông
=> AC2 = AB2 + BC2
AC2 = ( \(4\sqrt{11}\)) 2 + (\(4\sqrt{11}\))2
AC2 = 176 + 176
AC2 = 352
AC = \(4\sqrt{22}\)
\(S_{MNPB}=NP^2=441\Rightarrow NP=21\left(cm\right)\)
MNPB là hình vuông (gt) nên NP = MB = 1/2 AB
\(\Rightarrow\frac{1}{2}AB=21\Rightarrow AB=42\left(cm\right)\)
Áp dụng định lí pitago, ta có:
\(BA^2+BC^2=AC^2\)
\(\Rightarrow2AB^2=AC^2\)
\(\Rightarrow AC^2=2.42^2\Rightarrow AC=42\sqrt{2}\left(cm\right)\)