Cho tam giac MNP co A,B thuoc MN,MP, AB//NP. Goi I la trung diem cua AB, MI cat NP tai H. Chung minh H la trung diem cua NP
Ko go duoc dau, thong cam!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: NP=5cm
b: Xét ΔNMQ vuông tại M và ΔNKQ vuông tại K có
NQ chung
góc MNQ=góc KNQ
Do đo: ΔMNQ=ΔKNQ
c: Xét ΔMQH vuông tại M và ΔKNP vuông tại K có
QM=QK
\(\widehat{MQH}=\widehat{KQP}\)
Do đo;s ΔMQH=ΔKNP
Suy ra: MH=KP
=>NH=NP
hay ΔNHP cân tại N
Hình bạn tự vẽ nha!
a) Xét 2 \(\Delta\) \(MKN\) và \(PKH\) có:
\(MK=PK\) (vì K là trung điểm của \(MP\))
\(\widehat{MKN}=\widehat{PKH}\) (vì 2 góc đối đỉnh)
\(KN=KH\left(gt\right)\)
=> \(\Delta MKN=\Delta PKH\left(c-g-c\right).\)
b) Xét 2 \(\Delta\) \(MKH\) và \(PKN\) có:
\(MK=PK\) (như ở trên)
\(\widehat{MKH}=\widehat{PKN}\) (vì 2 góc đối đỉnh)
\(KH=KN\left(gt\right)\)
=> \(\Delta MKH=\Delta PKN\left(c-g-c\right)\)
=> \(MH=PN\) (2 cạnh tương ứng).
=> \(\widehat{HMK}=\widehat{NPK}\) (2 góc tương ứng).
Mà 2 góc này nằm ở vị trí so le trong.
=> \(MH\) // \(NP.\)
c) Theo câu a) ta có \(\Delta MKN=\Delta PKH.\)
=> \(\widehat{MNK}=\widehat{PHK}\) (2 góc tương ứng).
Mà 2 góc này nằm ở vị trí so le trong.
=> \(MN\) // \(HP.\)
Mà \(MN\perp MP\) (vì \(\Delta MNP\) vuông tại \(M\))
=> \(HP\perp MP\left(đpcm\right).\)
Chúc bạn học tốt!
Để mình hướng dẫn vậy :
a) Bạn tự chứng minh
b) Vì I là trung điểm của PQ nên I cũng là trung điểm của AM. Gọi I' là giao điểm của OE và AM , chứng minh tam giác AFI' = tam giác MEI' rồi suy ra AI' = I'M=> I' trùng với I => đpcm
c) Bạn chứng minh tam giác MEA đều rồi => góc MAE = AEM = POM rồi tiếp tục suy ra OMP = OEA => tam giác đồng dạng.
Để mình hướng dẫn vậy :
a) Bạn tự chứng minh
b) Vì I là trung điểm của PQ nên I cũng là trung điểm của AM. Gọi I' là giao điểm của OE và AM , chứng minh tam giác AFI' = tam giác MEI' rồi suy ra AI' = I'M=> I' trùng với I => đpcm
c) Bạn chứng minh tam giác MEA đều rồi => góc MAE = AEM = POM rồi tiếp tục suy ra OMP = OEA => tam giác đồng dạng.
a, kẻ NO // AB
=> góc MAN = góc ONC (đv) (1)
góc ABO = góc NOC (đv) (2)
NO // AB (vc) => NOAB là hình thang
Mx // BC (gt)
=> MN = BO (tc)
MB = NO (tc) (3)
(1)(2)(3) => tam giác AMN = tam giác NOC (g-c-g)
=> AN = NC (đn) mà N nằm giữa A và C
=> N là trung điểm của AC (đn)
b, M là trd của AB (gt)
N là trd của AC (Câu a)
=> MN là đường trung bình của tam giác ABC (đn)
=> MN = 1/2BC (Đl)
mà BC = a
=> MN = a/2
Hình bạn tự vẽ nha..
Xét ΔMNH có AI//NH( AB//NP)
=> MI/MH=AI/NH( định lí talét)
Xét ΔMHP có BI//PH ( AB//NP)
=> MI/MH=BI/PH( định lí talét)
=> AI/NH=BI/PH
mà AI=BI ( I là trung điểm của AB)
=> NH=PH
=> H là trung điểm của NP( ĐPCM)
Đúng thì tick nha,
Thank nha