K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2019

Hình bạn tự vẽ nha..

Xét ΔMNH có AI//NH( AB//NP)

=> MI/MH=AI/NH( định lí talét)

Xét ΔMHP có BI//PH ( AB//NP)

=> MI/MH=BI/PH( định lí talét)

=> AI/NH=BI/PH

mà AI=BI ( I là trung điểm của AB)

=> NH=PH

=> H là trung điểm của NP( ĐPCM)

Đúng thì tick nha,oaoa

17 tháng 2 2019

Thank nhayeu

a: NP=5cm

b: Xét ΔNMQ vuông tại M và ΔNKQ vuông tại K có

NQ chung

góc MNQ=góc KNQ

Do đo: ΔMNQ=ΔKNQ

c: Xét ΔMQH vuông tại M và ΔKNP vuông tại K có

QM=QK

\(\widehat{MQH}=\widehat{KQP}\)

Do đo;s ΔMQH=ΔKNP

Suy ra: MH=KP

=>NH=NP

hay ΔNHP cân tại N

2 tháng 12 2019

Hình bạn tự vẽ nha!

a) Xét 2 \(\Delta\) \(MKN\)\(PKH\) có:

\(MK=PK\) (vì K là trung điểm của \(MP\))

\(\widehat{MKN}=\widehat{PKH}\) (vì 2 góc đối đỉnh)

\(KN=KH\left(gt\right)\)

=> \(\Delta MKN=\Delta PKH\left(c-g-c\right).\)

b) Xét 2 \(\Delta\) \(MKH\)\(PKN\) có:

\(MK=PK\) (như ở trên)

\(\widehat{MKH}=\widehat{PKN}\) (vì 2 góc đối đỉnh)

\(KH=KN\left(gt\right)\)

=> \(\Delta MKH=\Delta PKN\left(c-g-c\right)\)

=> \(MH=PN\) (2 cạnh tương ứng).

=> \(\widehat{HMK}=\widehat{NPK}\) (2 góc tương ứng).

Mà 2 góc này nằm ở vị trí so le trong.

=> \(MH\) // \(NP.\)

c) Theo câu a) ta có \(\Delta MKN=\Delta PKH.\)

=> \(\widehat{MNK}=\widehat{PHK}\) (2 góc tương ứng).

Mà 2 góc này nằm ở vị trí so le trong.

=> \(MN\) // \(HP.\)

\(MN\perp MP\) (vì \(\Delta MNP\) vuông tại \(M\))

=> \(HP\perp MP\left(đpcm\right).\)

Chúc bạn học tốt!

26 tháng 5 2016

Để mình hướng dẫn vậy : 

a) Bạn tự chứng minh

b) Vì I là trung điểm của PQ nên I cũng là trung điểm của AM. Gọi I' là giao điểm của OE và AM , chứng minh tam giác AFI' = tam giác MEI' rồi suy ra AI' = I'M=> I' trùng với I => đpcm

c) Bạn chứng minh tam giác MEA đều rồi => góc MAE = AEM = POM rồi tiếp tục suy ra OMP = OEA => tam giác đồng dạng. 

26 tháng 5 2016

Để mình hướng dẫn vậy : 
a) Bạn tự chứng minh
b) Vì I là trung điểm của PQ nên I cũng là trung điểm của AM. Gọi I' là giao điểm của OE và AM , chứng minh tam giác AFI' = tam giác MEI' rồi suy ra AI' = I'M=> I' trùng với I => đpcm
c) Bạn chứng minh tam giác MEA đều rồi => góc MAE = AEM = POM rồi tiếp tục suy ra OMP = OEA => tam giác đồng dạng. 

16 tháng 9 2019

A B C M x N O a H

a, kẻ NO // AB 

=> góc MAN = góc ONC (đv)    (1)

      góc ABO = góc NOC (đv)     (2)

NO // AB (vc) => NOAB là hình thang

Mx // BC (gt)

=>  MN = BO  (tc)

       MB = NO  (tc)    (3)

(1)(2)(3) => tam giác AMN = tam giác NOC (g-c-g)

=> AN = NC  (đn) mà N nằm giữa A và C

=> N là trung điểm của AC (đn)

b, M là trd của AB (gt)

N  là trd của AC (Câu a)

=> MN là đường trung bình của tam giác ABC (đn)

=> MN = 1/2BC (Đl)

mà BC = a

=>  MN = a/2