Chứng minh đẳng thức:
a) x(y+z)-y(x-z)=(x+y)z
b)x(y-z)-x(y+a)=-x(z+a)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x-y\right)-\left(x-z\right)=\left(z+x\right)-\left(y+x\right)\)
BL:
Ta có: \(\left(x-y\right)-\left(x-z\right)\)
\(=x-y-x+z\)
\(=z+x-y-x\)
\(=\left(z+x\right)-\left(y+x\right)\)
\(\Rightarrow\) \(\left(x-y\right)-\left(x-z\right)=\left(z+x\right)-\left(y+x\right)\)
b) \(\left(x-y+z\right)-\left(y+z-x\right)-\left(x-y\right)=\left(z-y\right)-\left(z-x\right)\)
BL:
Lại có: \(\left(x-y+z\right)-\left(y+z-x\right)-\left(x-y\right)\)
\(=x-y+z-y-z+x-x+y\)
\(=\left(x-y-x+y\right)+\left(z-y\right)-\left(z-x\right)\)
\(=\left(z-y\right)-\left(z-x\right)\)
\(\Rightarrow\) \(\left(x-y+z\right)-\left(y+z-x\right)-\left(x-y\right)=\left(z-y\right)-\left(z-x\right)\)
x(y-z)-y(x+z)+z(x-y)
\(=xy-xz-xy-yz+xz-yz\)
\(=-2yz\)
\(\Rightarrow\left(x+y+z\right)^2\ge\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2\ge3\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}\right)=\dfrac{3\left(x+y+z\right)}{xyz}\Rightarrow x+y+z\ge\dfrac{3}{xyz}\)
\(x+y+z=\dfrac{x+y+z}{3}+\dfrac{2\left(x+y+z\right)}{3}\ge\dfrac{1}{3}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)+\dfrac{2}{3}.\dfrac{3}{xyz}\ge\dfrac{1}{3}\left(\dfrac{9}{x+y+z}\right)+\dfrac{2}{xyz}=\dfrac{3}{x+y+z}+\dfrac{2}{xyz}\left(đpcm\right)\)
\(dấu"="xảy\) \(ra\Leftrightarrow x=y=z=1\)
Nếu một trong các số \(x+y-z;y+z-x;z+x-y\) bằng 0 thì cả 3 số đều bằng 0 và dẫn đến \(x=y=z=0\), mâu thuẫn
Từ giả thiết ta có : \(\begin{cases}x\log y\left(y+z-x\right)=y\log x\left(z+x-y\right)\\y\log z\left(z+x-y\right)=z\log y\left(x+y-z\right)\\z\log x\left(x+y-z\right)=x\log z\left(y+z-x\right)\end{cases}\)
Xét đẳng thức thứ nhất ta có :
\(x\log y\left(y+z-x\right)=y\log x\left(z+x-y\right)\Leftrightarrow x\log y=y\log x.\frac{z+x-y}{y+z-x}\) \(\Leftrightarrow x\log y+y\log x=y\log x\left(\frac{z+x-y}{y+z-x}+1\right)\Leftrightarrow x\log y+z\log x=y\log x\frac{2z}{y+z-x}\)
Biến đổi tương tự với đẳng thức thứ hai ta có :
\(y\log z+z\log y=z\log y\frac{2z}{z+z-y}\)
Ta thấy rằng : \(x^y.y^x=y^z.z^y\Leftrightarrow x\log y+y\log x=y\log z+z\log y\)
Do đó ta cần có :
\(y\log x\frac{2z}{y+z-x}=z\log y\frac{2z}{z+x-y}\Leftrightarrow y\log x\left(z+x-y\right)=x\log y\left(y+z-x\right)\), đúng
Do đó ta được : \(x^yy^x=y^z.z^y\)
Chứng minh tương tự ta có : \(y^zz^y=z^x.x^z\)
=> Điều phải chứng minh
\(VT=3\left(x^2+y^2+z^2\right)-\left(x-y\right)^2-\left(y-z\right)^2-\left(z-x\right)^2=\left(x+y+z\right)^2\)
\(\Leftrightarrow3x^2+3y^2+3z^2-x^2+2xy-y^2-y^2+2yz-z^2-z^2+2xz-x^2=\left(x+y+z\right)^2\)
\(\Leftrightarrow x^2+y^2+z^2+2xy+2yz+2xz=\left(x+y+z\right)^2\)* luôn đúng *
Vậ ta có đpcm
a)Đặt A=(x+y+z)3-x3-y3-z3
Xét (x+y+z)3=[(x+y)+z]3=(x+y)3+z3+3z(x+y)(x+y+z) =x3+y3+3xy(x+y)+z3+3z(x+y)(x+y+z)
=(x3+y3+z3)+3(x+y)(xy+xz+yz+z2)
=(x3+y3+z3)+3(x+y)[(xy+yz)+(xz+z2)]
=(x3+y3+z3)+3(x+y)[y(x+z)+z(x+z)]
=(x3+y3+z3)+3(x+y)(x+z)(y+z)
Từ đó suy ra A=(x3+y3+z3)+3(x+y)(x+z)(y+z)-x3-y3-z3=3(x+y)(x+z)(y+z)
a)biến đổi vế trái ta đc:x(y+z)-y(x-z)=xy+xz-xy+yz
=(xz+yz)+(xy-xy)
=z(x+y)=vế phải(đpcm)
b)biến đổi vế trái ta đc:x(y-z)-x(y+a)=xy-xz-xy-xa
=(xy-xy)-(xz+xa)
=-(xz+xa)
=-x(z+a)=vế phải(đpcm)
a;\(x\left(y+z\right)-y\left(x-z\right)=\left(x+y\right)z\)
\(xy+xz-xy+yz=\left(x+y\right)z\)
\(xz+yz=\left(x+y\right)z\)
\(\left(x+y\right)z=\left(x+y\right)z\left(ĐPCM\right)\)
b;\(x\left(y-z\right)-x\left(y+a\right)=-x\left(z+a\right)\)
\(xy-xz-xy-xa=-x\left(z+a\right)\)
\(-xz-xa=-x\left(z+a\right)\)
\(-x\left(z+a\right)=-x\left(z+a\right)\left(ĐPCM\right)\)
P/S: sai thì thôi nha