Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x-y\right)-\left(x-z\right)=\left(z+x\right)-\left(y+x\right)\)
BL:
Ta có: \(\left(x-y\right)-\left(x-z\right)\)
\(=x-y-x+z\)
\(=z+x-y-x\)
\(=\left(z+x\right)-\left(y+x\right)\)
\(\Rightarrow\) \(\left(x-y\right)-\left(x-z\right)=\left(z+x\right)-\left(y+x\right)\)
b) \(\left(x-y+z\right)-\left(y+z-x\right)-\left(x-y\right)=\left(z-y\right)-\left(z-x\right)\)
BL:
Lại có: \(\left(x-y+z\right)-\left(y+z-x\right)-\left(x-y\right)\)
\(=x-y+z-y-z+x-x+y\)
\(=\left(x-y-x+y\right)+\left(z-y\right)-\left(z-x\right)\)
\(=\left(z-y\right)-\left(z-x\right)\)
\(\Rightarrow\) \(\left(x-y+z\right)-\left(y+z-x\right)-\left(x-y\right)=\left(z-y\right)-\left(z-x\right)\)
a)biến đổi vế trái ta đc:x(y+z)-y(x-z)=xy+xz-xy+yz
=(xz+yz)+(xy-xy)
=z(x+y)=vế phải(đpcm)
b)biến đổi vế trái ta đc:x(y-z)-x(y+a)=xy-xz-xy-xa
=(xy-xy)-(xz+xa)
=-(xz+xa)
=-x(z+a)=vế phải(đpcm)
a;\(x\left(y+z\right)-y\left(x-z\right)=\left(x+y\right)z\)
\(xy+xz-xy+yz=\left(x+y\right)z\)
\(xz+yz=\left(x+y\right)z\)
\(\left(x+y\right)z=\left(x+y\right)z\left(ĐPCM\right)\)
b;\(x\left(y-z\right)-x\left(y+a\right)=-x\left(z+a\right)\)
\(xy-xz-xy-xa=-x\left(z+a\right)\)
\(-xz-xa=-x\left(z+a\right)\)
\(-x\left(z+a\right)=-x\left(z+a\right)\left(ĐPCM\right)\)
P/S: sai thì thôi nha
\(x\left(y+z\right)-y\left(x-z\right)=xy+xz-yx+yz\)
\(=xy-xy+\left(zx+zy\right)\)
\(=\left(x+y\right)z\)
b, \(\left(m-n\right)\left(m+n\right)=m^2+mn-nm-n^2\)
\(=m^2-n^2\)
Ta có:
A = ( -x + y - z) - ( y - x ) - ( x- z )
A = -x + y - z - y + x - x + z
A = ( -x + x ) + ( y - y ) - ( z - z )
A = 0 + 0 - 0 = 0
=> ĐPCM
Vậy giá trị của biểu thức A luôn dương
K ĐÚNG CHO MIK ĐÓ NHA MẤY CẬU !