K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2023

x(y-z)-y(x+z)+z(x-y)

\(=xy-xz-xy-yz+xz-yz\)

\(=-2yz\)

29 tháng 10 2023

Ta có:

`x(y - z) - y(x + z) + z(x - y) =xy-xz -xy-yz+xz-yz = -2yz`

Vậy `x(y - z) - y(x + z) + z(x - y) =-2yz`

??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????

8 tháng 10 2018

a) \(x^2-y^2-x-y\)

\(=\left(x^2-y^2\right)-\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y\right)-\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y-1\right)\)

b) \(x^2-y^2+2yz-z^2\)

\(=x^2-\left(y^2-2yz+z^2\right)\)

\(=x^2-\left(y-z\right)^2\)

\(=\left(x-y+z\right)\left(x+y-z\right)\)

12 tháng 12 2018

Ta có : \(4x^2+2y^2+2z^2-4xy-4xz+2yz-6y-10z+34=0\)

    \(\Leftrightarrow\left(4x^2+y^2+z^2-4xy-4xz+2yz\right)+\left(y^2-6y+9\right)+\left(z^2-10z+25\right)=0\)

   \(\Leftrightarrow\left(2x-y-z\right)^2+\left(y-3\right)^2+\left(z-5\right)^2=0\)

Do \(\hept{\begin{cases}\left(2x-y-z\right)^2\ge0\\\left(y-3\right)^2\ge0\\\left(z-5\right)^2\ge0\end{cases}\Rightarrow VT\ge0}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-y-z=0\\y-3=0\\z-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}2x=y+z\\y=3\\z=5\end{cases}\Leftrightarrow}\hept{\begin{cases}x=4\\y=3\\z=5\end{cases}}}\)

Khi đó \(P=\left(4-4\right)^{2018}+\left(3-4\right)^{2018}+\left(5-4\right)^{2018}\)

               \(=0+\left(-1\right)^{2018}+1^{2018}\)

               \(=2\)

19 tháng 12 2015

Quen quen! Hìh như mk làm rui. Để xem lại đã

19 tháng 12 2015

thật ko nghĩa là gì

siêu xinh đẹp

19 tháng 12 2015

Tick cho mình sau mình giải chi tiết cho

19 tháng 7 2018

x^2+2xy+y^2+y^2-2yz+z^2+y^2+4y+4+6-2x=0

(x+y)^2+(y-z)^2+(y+2)^2+2*(3-x)=0

y+2=0=>y=-2

y-z=0=>z=-2 

x+y=0=>x=2

19 tháng 7 2018

<=>(x2+2xy+y2)+(y2-2yz+z2)+(y2+6y+9)-(2x+2y)+1=0

<=>[(x+y)2-2(x+y)+1]+(y-z)2+(y+3)2=0

<=>(x+y-1)2+(y-z)2+(y+3)2=0

Vì \(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\\\left(y-z\right)^2\ge0\\\left(y+3\right)^2\ge0\end{cases}\Rightarrow\left(x+y-1\right)^2+\left(y-z\right)^2+\left(y+3\right)^2\ge0}\)

\(\Rightarrow\hept{\begin{cases}x+y-1=0\\y-z=0\\y+3=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=1\\y-z=0\\y=-3\end{cases}}\Rightarrow\hept{\begin{cases}x=4\\z=-3\\y=-3\end{cases}}}\)

Vậy x=4,y=z=-3