K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2019

Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) => \(\frac{x^2}{4}=\frac{y^2}{9}=\frac{2z^2}{32}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

   \(\frac{x^2}{4}=\frac{y^2}{9}=\frac{2z^2}{32}=\frac{x^2+y^2-2z^2}{4+9-32}=\frac{76}{-19}=-4\)

=> \(\hept{\begin{cases}\frac{x^2}{4}=-4\\\frac{y^2}{9}=-4\\\frac{2z^2}{32}=-4\end{cases}}\) => \(\hept{\begin{cases}x^2=-4.4=-16\\y^2=-4.9=-36\\z^2=\left(-4.32\right):2=-64\end{cases}}\) => ko có giá trị x,y,z thõa mãn

Ta có: \(-2x=5y\) => \(\frac{x}{5}=\frac{y}{-2}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

        \(\frac{x}{5}=\frac{y}{-2}=\frac{x+y}{5-2}=\frac{30}{3}=10\)

=> \(\hept{\begin{cases}\frac{x}{5}=10\\\frac{y}{-2}=10\end{cases}}\) => \(\hept{\begin{cases}x=10.5=50\\y=10.\left(-2\right)=-20\end{cases}}\)

Vậy ..

14 tháng 7 2019

\(\frac{x}{-3}=\frac{y}{-7}\Rightarrow\frac{2x}{-6}=\frac{4y}{-28}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{2x}{-6}=\frac{4y}{-28}=\frac{2x+4y}{(-6)+(-28)}=\frac{68}{-34}=-2\)

Vậy : \(\hept{\begin{cases}\frac{x}{-3}=-2\\\frac{y}{-7}=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=14\end{cases}}\)

27 tháng 6 2023

a, 2\(xy\) - 2\(x\) + 3\(y\) = -9

(2\(xy\) - 2\(x\)) + 3\(y\) - 3 = -12

2\(x\)(\(y-1\)) + 3(\(y-1\)) = -12

(\(y-1\))(2\(x\) + 3) = -12

Ư(12) = {-12; -6; -4; -3; -2; -1; 1; 2; 3; 4; 6; 12}

Lập bảng ta có:

\(y\)-1 -12 -6 -4 -3 -2 -1 1 2 3 4 6 12
\(y\) -11 -5 -3 -2 -1 0 2 3 4 5 7 13
2\(x\)+3 1 2 3 4 6 12 -12 -6 -4 -3 -2 -1
\(x\) -1 -\(\dfrac{1}{2}\) 0 \(\dfrac{1}{2}\) \(\dfrac{3}{2}\) \(\dfrac{9}{2}\) \(-\dfrac{15}{2}\) \(-\dfrac{9}{2}\) -\(\dfrac{7}{2}\) -3 \(-\dfrac{5}{2}\) -2

Theo bảng trên ta có: Các cặp \(x\);\(y\) nguyên thỏa mãn đề bài là:

(\(x;y\)) = (-1; -11); (0; -3); (-3; 5); ( -2; 13)

 

  
 

 

 

          

 

    

27 tháng 6 2023

b, (\(x+1\))2(\(y\) - 3) = -4 

    Ư(4) = {-4; -2; -1; 1; 2; 4}

Lập bảng ta có: 

\(\left(x+1\right)^2\) - 4(loại) -2(loại) -1(loại) 1 2 4
\(x\)       0 \(\pm\)\(\sqrt{2}\)(loại) 1; -3
\(y-3\) 1 2 4 -4 -2 -1
\(y\)       -1   2

Theo bảng trên ta có: các cặp \(x;y\) nguyên thỏa mãn đề bài là: 

(\(x;y\)) = (0; -1); (-3; 2); (1; 2)

 

12 tháng 4 2021

Biến đổi mỗi đa thức theo hướng làm xuất hiện thừa số x+y-2 M=x3+x2y−2x2−xy−y2+3y+x−1M=x3+x2y−2x2−xy−y2+3y+x−1

M=x3+x2y−2x2−xy−y2+(2y+y)+x−(−2+1)M=x3+x2y−2x2−xy−y2+(2y+y)+x−(−2+1)

M=(x3+x2y−2x2)−(xy+y2−2y)+(x+y−2)+1M=(x3+x2y−2x2)−(xy+y2−2y)+(x+y−2)+1

M=(x2.x+x2.y−2x2)−(x.y+y.y−2y)+(x+y−2)+1M=(x2.x+x2.y−2x2)−(x.y+y.y−2y)+(x+y−2)+1

M=x2.(x+y−2)−y.(x+y−2)+(x+y−2)+1M=x2.(x+y−2)−y.(x+y−2)+(x+y−2)+1

M=x2.0+y.0+0+1M=x2.0+y.0+0+1

M=1M=1

N=x3+x2y−2x2−xy2+x2y+2xy+2y+2x−2N=x3+x2y−2x2−xy2+x2y+2xy+2y+2x−2

N=x3+x2y−2x2−xy2+x2y+2xy+2y+2x−(−4+2)N=x3+x2y−2x2−xy2+x2y+2xy+2y+2x−(−4+2)

N=(x3+x2y−2x2)−(x2y+xy2−2xy)+(2x+2y−4)+2N=(x3+x2y−2x2)−(x2y+xy2−2xy)+(2x+2y−4)+2

N=(x2x+x2y−2x2)−(xyx+xyy−2xy)+(2x+2y−4)+2N=(x2x+x2y−2x2)−(xyx+xyy−2xy)+(2x+2y−4)+2

N=x2(x+y−2)−xy(x+y−2)+2(x+y−2)+2N=x2(x+y−2)−xy(x+y−2)+2(x+y−2)+2

N=x2.0−xy.0+2.0+2N=x2.0−xy.0+2.0+2

N=2N=2

P=x4+2x3y−2x3+x2y2−2x2y−x(x+y)+2x+3P=x4+2x3y−2x3+x2y2−2x2y−x(x+y)+2x+3

P=(x4+x3y−2x3)+(x3y+x2y2−2x2y)−(x2+xy−2x)+3P=(x4+x3y−2x3)+(x3y+x2y2−2x2y)−(x2+xy−2x)+3P=(x3x+x3y−2x3)+(x2y.x+x2yy−2x2y)−(xx+xy−2x)+3P=(x3x+x3y−2x3)+(x2y.x+x2yy−2x2y)−(xx+xy−2x)+3

P=x3(x+y−2)+x2y(x+y−2)−x(x+y−2)+3P=x3(x+y−2)+x2y(x+y−2)−x(x+y−2)+3

P=x3.0+x2y.0−x.0+3P=x3.0+x2y.0−x.0+3

P=3

28 tháng 7 2018

1.

\(\frac{25x^4y^3-15x^3y^5+20x^2y^4}{5x^2y^3}\)

\(=\frac{5x^2y^3\left(5x^2-3xy^2+4y\right)}{5x^2y^3}\)

\(=5x^2-3xy^2+4y\)

2.

a)  \(27x^4-8x=x\left(27x^3-8\right)\)

\(=x\left(3x-2\right)\left(9x^2+6x+4\right)\)

b)  \(16x^2y-4xy^2-4x^3+x^2y\)

\(=4xy\left(4x-y\right)-x^2\left(4x-y\right)\)

\(=x\left(4x-y\right)\left(4y-x\right)\)

c) \(x^2-2x-5+2\sqrt{5}\)

\(=\left(x-1\right)^2-6+2\sqrt{5}\)

\(=\left(x-1\right)^2-\left(6-2\sqrt{5}\right)=\left(x-1\right)^2-\left(\sqrt{5}-1\right)^2\)

\(=\left(x-\sqrt{5}\right)\left(x-2+\sqrt{5}\right)\)

28 tháng 7 2018

Bài 1:

 \(\left(25x^4y^3-15x^3y^5+20x^2y^4\right):\left(5x^2y^3\right)\)

\(=\frac{25x^4y^3-15x^3y^5+20x^2y^4}{5x^2y^3}\)

\(=\frac{5x^2y^3\left(5x^2-3xy^2+4y\right)}{5x^2y^3}\)

\(=5x^2-3xy^2+4y\)

Bài 2: 

a) \(27x^4-8x\)

\(=x\left(3x-2\right)\left(3^2x^2+2.3x+2^2\right)\)

\(=x\left(3x-2\right)\left(9x^2+6x+4\right)\)

b) \(16x^2y-4xy^2-4x^3+x^2y\)

\(=4y^2+x^2-\left(4x^2\right)^2\)

\(=x\left(-4x^2+xy+4y^2\right)\)

17 tháng 5 2016

1. G= 3x2y - 2xy2 + x3y3 + 3xy- 2x2y - 2x3y3

G = x2y + xy2 - x3y3 = xy (x + y -x2y2)  . Khi x= -2 . y=4 ta có G= -2*4( -2 + 4 - (-2)* 4) = 496

 

17 tháng 5 2016

a. B+A =( -2x2 + xy +2y2 -5x +2y - 3) + ( x-3xy -y2 +2x -3y +1)= -x2 - 2xy + y2 -3x -y -2 

A-B= -( -2x+xy + 2y2 -5x +2y -3) + ( x2 -3xy -y2 + 2x -3y +1) = 3x2 -4xy -3y2 +7x -5y +4

Tại x = -1, y =2

A= (-1)2 -3*(-1)*2 -22 +2*(-1) -3*2 +1 = -4

B= -2*(-1)2 + (-1)*2 + 2*22 -5*(-1) + 2*2 -3 = 10

thực sự mk rất mún giúp bn nhưng mk chưa hok tới!! xin lỗi

45646565557657767876876876565657676768876334455454655454

27 tháng 12 2017

mình giải đc phần a) thôi:

x+y=xy
<=> x+y-xy=0
<=> x(1-y)-(1-y)+1=0
<=> (1-y)(x-1)=-1
do đó: 1-y=1;x-1=-1

 hoặc 1-y=-1; x-1=1
+) 1-y=1 => y=0

x-1=-1=> x=0

+) 1-y=-1 => y=2

x-1=1 => x=2

=> cặp x,y cần tìm là (0;0) và (2;2)

12 tháng 8 2016

X/2=y/6

X=y/6 . 2 = y/3=1/3 y

Thay vào ta có

1/3y+ y=6

4/3y=6

Y=18/4

X=18/4 . 1/3=18/12=3/2

Đến đây bạn tự tính x-y nha

12 tháng 8 2016

x/2=x/6

=> x=0

x=0 => y= 6

Vậy x-y = 0-6= -6